Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy in autoimmune, demyelinating disease of the central nervous system

Abstract

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS), where suspected autoimmune attack causes nerve demyelination and progressive neurodegeneration and should benefit from both anti-inflammatory and neuroprotective strategies. Although neuroprotection strategies are relatively unexplored in MS, systemic delivery of anti-inflammatory agents to people with MS has so far been relatively disappointing. This is most probably because of the limited capacity of these molecules to enter the target tissue, because of exclusion by the blood–brain barrier. The complex natural history of MS also means that any therapeutic agents will have to be administered long-term. Gene therapy offers the possibility of site-directed, long-term expression, and is currently being preclinically investigated in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. While some immune effects may be targeted in the periphery using DNA vaccination, strategies both viral and nonviral are being developed to target agents into the CNS either via direct delivery or using the trafficking properties of cell-carrier systems. Targeting of leucocyte activation, cytokines and nerve growth factors have shown some promising benefit in animal EAE systems, the challenge will be their application in clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Raine CS, McFarland HF, Tourtellotte WW (eds). Multiple Sclerosis. Clinical and Pathogenetic Basis. Chapman & Hall: London, 1997.

    Google Scholar 

  2. Compston A, Coles A . Multiple sclerosis. Lancet. 2002; 359: 1221–1231. MEDLINE

    PubMed  Google Scholar 

  3. Compston A, Sawcer S . Genetic analysis of multiple sclerosis. Curr Neurol Neurosci Rep 2002; 2: 259–266. MEDLINE

    Article  PubMed  Google Scholar 

  4. Vanderlugt CL, Miller SD . Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2: 85–95. MEDLINE.

    CAS  PubMed  Google Scholar 

  5. Olson JK, Eagar TN, Miller SD . Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J Immunol 2002; 169: 2719–2726. MEDLINE.

    CAS  PubMed  Google Scholar 

  6. van Noort JM, Bajramovic JJ, Plomp AC, van Stipdonk MJ . Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J Neuroimmunol. 2000; 105: 46–57. MEDLINE

    CAS  PubMed  Google Scholar 

  7. Alvord ECJ, Kies MW, Suckling AJ (eds). Experimental Allergic Encephalomylitis: A Useful Model For Multiple Sclerosis. Allen R Liss: New York, 1984.

    Google Scholar 

  8. Flugel A et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity. 2001; 14: 547–560. MEDLINE

    CAS  PubMed  Google Scholar 

  9. Butter C, Baker D, O'Neill JK, Turk JL . Mononuclear cell trafficking and plasma protein extravasation into the CNS during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice. J Neurol Sci. 1991; 104: 9–12. MEDLINE

    CAS  PubMed  Google Scholar 

  10. Karin N et al. Selective and nonselective stages in homing of T lymphocytes to the central nervous system during experimental allergic encephalomyelitis. J Immunol 1993; 150: 4116–4124. MEDLINE.

    CAS  PubMed  Google Scholar 

  11. Steinman L et al. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci. 2002; 25: 491–505. MEDLINE.

    CAS  PubMed  Google Scholar 

  12. Baker D, Gibjels K, Steinman LS . Cytokines in multiple sclerosis. In: The Role of Cytokines in Autoimmunity. Brennan FO, Feldmann M (eds). RG Landes Company: Austin, 1996. pp 77–99.

    Google Scholar 

  13. Issazadeh S et al. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J Neuroimmunol 1995; 61: 205–212. Article MEDLINE

    CAS  PubMed  Google Scholar 

  14. Kennedy MK, Torrance DS, Picha KS, Mohler KM . Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 1992; 149: 2496–2505. MEDLINE

    CAS  PubMed  Google Scholar 

  15. Baranzini SE et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol. 2000; 165: 6576–6582. MEDLINE

    CAS  PubMed  Google Scholar 

  16. Lock C et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002; 8: 500–508. MEDLINE

    CAS  PubMed  Google Scholar 

  17. Romagnani S . T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000; 85: 9–18. MEDLINE

    CAS  PubMed  Google Scholar 

  18. Ando DG et al. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 1989; 124: 132–143. MEDLINE

    CAS  PubMed  Google Scholar 

  19. Youssef S et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420: 78–84. MEDLINE

    CAS  PubMed  Google Scholar 

  20. Brok HP et al. Non-human primate models of multiple sclerosis. Immunol Rev. 2001; 183: 173–185. MEDLINE

    CAS  PubMed  Google Scholar 

  21. Leonard JP, Waldburger KE, Goldman SJ . Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995; 181: 381–386. MEDLINE

    CAS  PubMed  Google Scholar 

  22. Falcone M, Rajan A, Bloom B, Brosnan C . A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4 deficient C57BL/6 and BALB/c mice. J Immunol 1998; 160: 4822–4830. MEDLINE

    CAS  PubMed  Google Scholar 

  23. Rott O, Fleischer B, Cash E . Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 1994; 24: 1434–1440. MEDLINE

    CAS  PubMed  Google Scholar 

  24. Samoilova E, Horton J, Chen Y . Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol 1998; 188: 118–124. MEDLINE

    CAS  PubMed  Google Scholar 

  25. Chen Y et al. Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–1240. MEDLINE

    CAS  PubMed  Google Scholar 

  26. Wiendl H, Hohlfeld R . Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 2002; 16: 183–200. MEDLINE

    CAS  PubMed  Google Scholar 

  27. Calabresi PA et al. Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 1998; 51: 289–292. MEDLINE

    CAS  PubMed  Google Scholar 

  28. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. Neurology 1996; 47: 889–894. MEDLINE

  29. The Lenercept Multiple Sclerosis Study Group and University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 1999; 53: 457–465.

  30. van Oosten BW et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 1996; 7: 1531–1534.

    Google Scholar 

  31. Saunders NR, Habgood MD, Dziegielewska KM . Barrier mechanisms in the brain, I. Adult brain. Clin Exp Pharmacol Physiol 1999; 26: 11–19. MEDLINE

    CAS  PubMed  Google Scholar 

  32. Waisman A et al. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nature Med 1996; 2: 899–905. MEDLINE

    CAS  PubMed  Google Scholar 

  33. Youssef S et al. Long lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C–C chemokines. J Immunol 1998; 161: 3870–3879. MEDLINE

    CAS  PubMed  Google Scholar 

  34. Croxford JL et al. Cytokine gene therapy in experimental allergic encephalomyelitis by injection of plasmid DNA-cationic liposome complex into the central nervous system. J Immunol 1998; 160: 5181–5187. MEDLINE

    CAS  PubMed  Google Scholar 

  35. Piccirillo CA, Prud'homme GJ . Prevention of experimental allergic encephalomyelitis by intramuscular gene transfer with cytokine-encoding plasmid vectors. Hum Gene Ther 1999; 10: 1915–1922. MEDLINE

    CAS  PubMed  Google Scholar 

  36. Lobell A et al. Presence of CpG DNA and the local cytokine milieu determine the efficacy of suppressive DNA vaccination in experimental autoimmune encephalomyelitis. J Immunol 1999; 163: 4754–4762. MEDLINE

    CAS  PubMed  Google Scholar 

  37. Weissert R et al. Protective DNA vaccination against organ-specific autoimmunity is highly specific and discriminates between single amino acid substitutions in the peptide autoantigen. Proc Natl Acad Sci USA 2000; 97: 1689–1694. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Garren H et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 2001; 15: 15–22. MEDLINE

    CAS  PubMed  Google Scholar 

  39. Wildbaum G, Netzer N, Karin N . Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T-cell polarization and suppresses experimental auto-immune encephalomyelitis. J Immunol 2002; 168: 5885–5892. MEDLINE

    CAS  PubMed  Google Scholar 

  40. Lobell A et al. Suppressive DNA Vaccination in myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis involves a T1-biased immune response. J Immunol 2003; 170: 1806–1813. MEDLINE

    CAS  PubMed  Google Scholar 

  41. Soilu-Hanninen M et al. Treatment of experimental autoimmune encephalomyelitis with antisense oligonucleotides against the low affinity neurotrophin receptor. J Neurosci Res 2000; 59: 712–721. MEDLINE

    CAS  PubMed  Google Scholar 

  42. Willenborg DO, Fordham SA, Cowden WB, Ramshaw IA . Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand J Immunol 1995; 41: 31–41. MEDLINE

    CAS  PubMed  Google Scholar 

  43. Croxford JL et al. Local gene therapy with CTLA4-immunoglobulin fusion protein in experimental allergic encephalomyelitis. Eur J Immunol 1998; 28: 3904–3916. MEDLINE

    CAS  PubMed  Google Scholar 

  44. Guy J, Qi X, Wang H, Hauswirth WW . Adenoviral gene therapy with catalase suppresses experimental optic neuritis. Arch Ophthalmol 1999; 117: 1533–1539. MEDLINE

    CAS  PubMed  Google Scholar 

  45. Kawaguchi Y . A gene therapy or purified CTLA4IgG treatment of experimental allergic encephalomyelitis. Hokkaido Igaku Zasshi 1999; 74: 467–475. MEDLINE

    CAS  PubMed  Google Scholar 

  46. Cua DJ et al. Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis. J Immunol 2001; 166: 602–608. MEDLINE

    CAS  PubMed  Google Scholar 

  47. Croxford JL, Feldmann M, Chernajovsky Y, Baker D . Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: a comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J Immuno 200l; 166: 4124–4130. MEDLINE

    Google Scholar 

  48. Furlan R et al. Central nervous system delivery of interleukin-4 by a non-replicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 1998; 9: 2605–2617. MEDLINE

    CAS  PubMed  Google Scholar 

  49. Ruffini F et al. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther. 2000; 8: 1207–1213. MEDLINE

    Google Scholar 

  50. Broberg E et al. Expression of interleukin-4 but not of interleukin-10 from a replicative herpes simplex virus type 1 viral vector precludes experimental allergic encephalomyelitis. Gene Ther. 2001; 8: 769–777. MEDLINE

    CAS  PubMed  Google Scholar 

  51. Furlan R et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing–remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther 2001; 8: 13–19. MEDLINE

    CAS  PubMed  Google Scholar 

  52. Furlan R et al. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol 2001; 167: 1821–1829. MEDLINE

    CAS  PubMed  Google Scholar 

  53. Poliani PL et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001; 12: 905–920. MEDLINE

    CAS  PubMed  Google Scholar 

  54. Croxford JL et al. Gene therapy for chronic relapsing experimental allergic encephalomyelitis using cells expressing a novel soluble p75 dimeric TNF receptor. J Immunol 2001; 164: 2776–2781. MEDLINE

    Google Scholar 

  55. Mathisen PM et al. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J Exp Med 1997; 186: 159–164. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shaw MK et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997; 185: 1711–1714. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mathisen PM et al. Th2 T cells expressing transgene PDGF-A serve as vectors for gene therapy in autoimmune demyelinating disease. J Autoimmun 1999; 13: 31–38. MEDLINE

    CAS  PubMed  Google Scholar 

  58. Chen LZ et al. Gene therapy in allergic encephalomyelitis using myelin basic protein-specific T cells engineered to express latent transforming growth factor-βl. Proc Natl Acad Sci USA 1998; 95: 12516–12521. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dal Canto RA et al. Local delivery of cytokines by retrovirally transduced antigen-specific TCR hybridoma cells in experimental autoimmune encephalomyelitis. Eur Cytokine Netw 1998; 9: 83–91. MEDLINE

    CAS  PubMed  Google Scholar 

  60. Dal Canto RA et al. Local delivery of TNF by retrovirus-transduced T lymphocytes exacerbates experimental autoimmune encephalomyelitis. Clin Immunol 1999; 90: 10–14. MEDLINE

    CAS  PubMed  Google Scholar 

  61. Flugel A et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 2001; 31: 11–22. MEDLINE

    CAS  PubMed  Google Scholar 

  62. Chen C et al. A gene therapy approach for treating T-cell-mediated autoimmune diseases. Blood 2001; 97: 886–894. MEDLINE

    CAS  PubMed  Google Scholar 

  63. Melo ME et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002; 168: 4788–4795. MEDLINE

    CAS  PubMed  Google Scholar 

  64. Martino G, Furlan R, Comi G, Adorini L . The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends Immunol 2001; 22: 483–490. MEDLINE

    CAS  PubMed  Google Scholar 

  65. Becher B, Durell BG, Noelle RJ . Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002; 110: 493–497. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schapiro RT . M anagement of spasticity, pain, and paroxysmal phenomena in multiple sclerosis. Curr Neurol Neurosci Rep 2001; 1: 299–302. MEDLINE

    CAS  PubMed  Google Scholar 

  67. Martino G et al. Cytokine therapy in immune-mediated demyelinating diseases of the central nervous system: a novel gene therapy approach. J Neuroimmunol 2000; 107: 184–190. MEDLINE

    CAS  PubMed  Google Scholar 

  68. Allen SJ et al. Isolation and characterization of cells infiltrating the spinal cord during the course of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Cell Immunol 1993; 146: 335–350. MEDLINE

    CAS  PubMed  Google Scholar 

  69. Boccaccio GL, Mor F, Steinman L . Noncoding plasmid DNA induces IFN-γ in vivo and suppresses autoimmune encephalomyelitis. Int Immunol 1999; 11: 289–296. MEDLINE

    CAS  PubMed  Google Scholar 

  70. Tsunoda I et al. Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 1999; 9: 481–493. MEDLINE

    CAS  PubMed  Google Scholar 

  71. Shimeld C et al. Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1. J Gen Virol 1997; 78: 3317–3325. MEDLINE

    CAS  PubMed  Google Scholar 

  72. Modo M et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res 2002; 958: 70–82. MEDLINE

    CAS  PubMed  Google Scholar 

  73. Thomas CE et al. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000; 97: 7482–7487. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ali RR et al. Co-injection of adenovirus expressing CTLA4-Ig prolongs adenovirally mediated lacZ reporter gene expression in the mouse retina. Gene Ther 1998; 5: 1561–1565. MEDLINE

    CAS  PubMed  Google Scholar 

  75. Lowenstein PR . Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 2002; 23: 23–30. M .MEDLINE

    CAS  PubMed  Google Scholar 

  76. Cao Q, Benton RL, Whittmore SR . Stem cell repair of central nervous system injury. J Neurosci Res 2002; 68: 501–510. MEDLINE

    CAS  PubMed  Google Scholar 

  77. Dezawa M . Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat Sci Int 2002; 77: 12–25. MEDLINE

    PubMed  Google Scholar 

  78. Galvin KA, Jones DG . Adult human neural stem cells for cell-replacement therapies in the central nervous system. Med J Aust 2002; 177: 316–318. MEDLINE

    PubMed  Google Scholar 

  79. Franklin RJ . Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull 2002; 57: 827–832. MEDLINE

    PubMed  Google Scholar 

  80. Chari DM, Blakemore WF . New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler 2002; 8: 271–277. MEDLINE

    CAS  PubMed  Google Scholar 

  81. Aebischer P et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 1996; 2: 696–699. MEDLINE

    CAS  PubMed  Google Scholar 

  82. Yura M et al. Role of MOG-stimulated Th1 type ‘light up’ (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE). J Autoimmun 2001; 17: 17–25. MEDLINE

    CAS  PubMed  Google Scholar 

  83. Pette M et al. M yelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990; 40: 1770–1776. MEDLINE

    CAS  PubMed  Google Scholar 

  84. van Noort JM et al. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 1995; 375: 798–801. MEDLINE

    CAS  PubMed  Google Scholar 

  85. Nicholson LB et al. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 1995; 3: 397–405. MEDLINE

    CAS  PubMed  Google Scholar 

  86. Young DA et al. IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol 2000; 164: 3563–3572. MEDLINE

    CAS  PubMed  Google Scholar 

  87. Kim HJ et al. Persistence of immune responses to altered and native myelin antigens in patients with multiple sclerosis treated with altered peptide ligand. Clin Immunol 2002; 104: 105–114. MEDLINE

    CAS  PubMed  Google Scholar 

  88. Chernajovsky Y et al. Inhibition of transfer of collagen-induced arthritis into SCID mice by ex vivo infection of spleen cells with retroviruses expressing soluble tumor necrosis factor receptor. Gene Ther 1995; 2: 731–735.

    CAS  PubMed  Google Scholar 

  89. Robinson WH, Garren H, Utz PJ, Steinman L . Millennium Award. Proteomics for the development of DNA tolerizing vaccines to treat autoimmune disease. Clin Immunol 2002; 103: 7–12. MEDLINE

    CAS  PubMed  Google Scholar 

  90. Acha-Orbea et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988; 54: 263–273. MEDLINE

    CAS  PubMed  Google Scholar 

  91. Kuchroo VK et al. Experimental allergic encephalomyelitis mediated by cloned T cells specific for a synthetic peptide of myelin proteolipid protein. Fine specificity and T cell receptor V beta usage. J Immunol 1992; 148: 3776–3782. MEDLINE

    CAS  PubMed  Google Scholar 

  92. Vandenbark AA et al. TCR peptide therapy in human autoimmune diseases. Neurochem Res 2001; 26: 713–730. MEDLINE

    CAS  PubMed  Google Scholar 

  93. Jones RE et al. Epitope spreading is not required for relapses in experimental autoimmune encephalomyelitis. J Immunol 2003; 170: 1690–1698. MEDLINE

    CAS  PubMed  Google Scholar 

  94. O'Neill JK et al. Therapy of chronic relapsing experimental allergic encephalomyelitis and the role of the blood–brain barrier: elucidation by the action of Brequinar sodium. J Neuroimmunol 1992; 38: 53–62. MEDLINE

    CAS  PubMed  Google Scholar 

  95. O'Neill JK, Baker D, Turk JL . Inhibition of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. J Neuroimmunol 1992; 41: 177–187. MEDLINE

    CAS  PubMed  Google Scholar 

  96. Morris-Downes MM et al. Pathological and regulatory effects of anti-myelin antibodies in experimental allergic encephalomyelitis in mice. J Neuroimmunol 2002; 125: 114–124. MEDLINE

    CAS  PubMed  Google Scholar 

  97. Pedotti R et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol 2001; 2: 216–222. MEDLINE

    CAS  PubMed  Google Scholar 

  98. Genain CP et al. Late complications of immune deviation therapy in a nonhuman primate. Science 1996; 274: 2054–2057. MEDLINE

    CAS  PubMed  Google Scholar 

  99. Bielekova B et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6: 1167–1175. MEDLINE

    CAS  PubMed  Google Scholar 

  100. Kappos L et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000; 6: 1176–1182. MEDLINE

    CAS  PubMed  Google Scholar 

  101. Coles AJ et al. M onoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 1999; 46: 296–304. MEDLINE

    CAS  PubMed  Google Scholar 

  102. Bjartmar C, Wujek JR, Trapp BD . Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 2003; 206: 165–171. MEDLINE

    CAS  PubMed  Google Scholar 

  103. Wujek JR et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 2002; 61: 23–32. MEDLINE

    PubMed  Google Scholar 

  104. Werner P, Pitt D, Raine CS . Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 2001; 50: 169–180. MEDLINE

    CAS  PubMed  Google Scholar 

  105. Pitt D, Werner P, Raine CS . Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 2000; 6: 67–70. MEDLINE

    CAS  PubMed  Google Scholar 

  106. Lo AC, Black JA, Waxman SG . Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. Neuroreport 2002; 13: 1909–1912. MEDLINE

    CAS  PubMed  Google Scholar 

  107. Kapoor R et al. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 2003; 53: 174–180. MEDLINE

    CAS  PubMed  Google Scholar 

  108. Stankoff B et al. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 2002; 22: 9221–9227. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang LJ et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 2002; 22: 6920–6928.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Alberch J, Perez-Navarro E, Canals JM . Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Res Bull 2002; 57: 817–822. MEDLINE

    CAS  PubMed  Google Scholar 

  111. Markert J et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874. MEDLINE

    CAS  PubMed  Google Scholar 

  112. Lock C, Oksenberg J, Steinman L . The role of TNF alpha and lymphotoxin in demyelinating disease. Ann Rheum Dis 58(Suppl 1): I121–I128. MEDLINE

  113. Steinman L . M. yelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis. J Exp Med 2001; 194: F27-–F30. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Correale J et al. Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 1995; 154: 2959–2968. MEDLINE

    CAS  PubMed  Google Scholar 

  115. Neuhaus O et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 2002; 59: 990–997. MEDLINE

    CAS  PubMed  Google Scholar 

  116. Chu CQ, Wittmer S, Dalton DK . Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 2000; 192: 123–128. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Panitch NL, Hirsch RL, Haley AS, Johnson KP . Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; 1: 893–895. MEDLINE

    CAS  PubMed  Google Scholar 

  118. Skurkovich S . Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Mult Scler 2001; 7: 277–2784. MEDLINE

    CAS  PubMed  Google Scholar 

  119. Hueseby ES et al. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 2001; 194: 669–676. MEDLINE

    Google Scholar 

  120. Sun D et al. M. yelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 2001; 166: 7579–7587. MEDLINE

    CAS  PubMed  Google Scholar 

  121. Babbe H et al. clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000; 192: 393–404. MEDLINE

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jacobsen M et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 2002; 125: 538–550. MEDLINE

    PubMed  Google Scholar 

Download references

Acknowledgements

The Multiple Sclerosis Society of Great Britain and Northern Ireland supported our work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D., Hankey, D. Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Ther 10, 844–853 (2003). https://doi.org/10.1038/sj.gt.3302025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302025

Keywords

This article is cited by

Search

Quick links