Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic β-globin in cultured murine fibroblasts

Abstract

A novel oriP/EBNA1-based episomal vector has been constructed that persists episomally in cultured murine fibroblasts. The vector, pBH148, is equipped with the entire 185-kb human β-globin gene locus. After amplification in bacteria, column-purified episomal pBH148 was transfected into both cultured EBNA1-expressing human D98/Raji positive control fusion cells (DRpBH148) and cultured EBNA1-negative murine fibroblast cells (A9pBH148). Cell cultures were maintained concurrently with and without hygromycin selection for a period of 3 months. We show long-term stable episome maintenance of the full-size 200-kb circular double-stranded pBH148 in both the DRpBH148 cultures and the A9pBH148 cultures, regardless of selective pressure by agarose gel electrophoresis and Southern blot. EBNA1 transgene was detected by PCR in all transfected cultures. In addition, we were able to detect correctly spliced human β-globin mRNA by RT-PCR in all transfected late-passage DRpBH148 and A9pBH148 cell cultures. These findings illustrate that this oriP/EBNA1-based episomal vector is stable in a previously nonpermissive murine cell line and is a potential vector for human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson WF . Human gene therapy Nature 1998 392: 25–30

    Article  CAS  PubMed  Google Scholar 

  2. Naviaux RK, Verma IM . Retroviral vectors for persistent expression in vivo Curr Opin Biotechol 1992 3: 540–547

    Article  CAS  Google Scholar 

  3. Drittanti L et al. Optimised helper virus-free production of high-quality adeno-associated virus vectors J Gene Med 2001 3: 59–71

    Article  CAS  PubMed  Google Scholar 

  4. Vos J-M . The simplicity of complex MACs Nature Biotechnol 1997 15: 1257–1259

    Article  CAS  Google Scholar 

  5. Hartigan-O'Connor D, Amalfitano A, Chamberlain JS . Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polmerase J Virol 1999 73: 7835–7841

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vos J-M . Mammalian artificial chromosomes as tools for gene therapy Curr Opin Genet Develop 1998 8: 351–359

    Article  CAS  Google Scholar 

  7. Vos J-M . Therapeutic mammalian artificial episomal chromosomes Curr Opin Mol Ther 1999 1: 204–205

    CAS  PubMed  Google Scholar 

  8. Simpson K, McGuigan A, Huxley C . Stable episomal maintenance of yeast artificial chromosomes in human cells Mol Cell Biol 1996 16: 5117–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun T-Q, Fenstermacher D, Vos J-M . Human artificial episomal chromosomes for cloning large DNA in human cells Nature Genet 1994 8: 33–41

    Article  CAS  PubMed  Google Scholar 

  10. Westphal EM et al. A system for shuttling 200 kb BAC/PAC clones into human cells: stable extrachromosomal persistence and long-term ectopic gene activation Hum Gene Ther 1998 9: 1863–1873

    Article  CAS  PubMed  Google Scholar 

  11. Baichwal VR, Sugden B . Vectors for gene transfer derived from animal DNA viruses: transient and stale expression of transfected genes Kucherlapati R (eds); Gene Transfer Plenum Press 1986 pp 148–177

  12. Ohe Y, Saijo N, Podack ER . Construction of a novel bovine papillomavirus vector without detectable transforming activity suitable for gene transfer Hum Gene Ther 1995 6: 325–333

    Article  CAS  PubMed  Google Scholar 

  13. Featherstone T, Huxley C . Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells Genomics 1993 17: 267–278

    Article  CAS  PubMed  Google Scholar 

  14. Nonet GH, Wahl GM . Introduction of YACs containing a putative mammalian replication origin into mammalian cells can generate structures that replicate autonomously Somat Cell Mol Genet 1993 19: 171–192

    Article  CAS  PubMed  Google Scholar 

  15. Harrington JJ et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes Nature Genet 1997 15: 345–355

    Article  CAS  PubMed  Google Scholar 

  16. Ikeno M et al. Construction of YAC-based mammalian artificial chromosomes Nature Biotechnol 1998 16: 431–439

    Article  CAS  Google Scholar 

  17. Krysan PJ, Haase SB, Calos MP . Isolation of human sequences that replicate autonomously in human cells Mol Cell Biol 1989 9: 1026–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wohlgemuth JG et al. Long-term gene expression from autonomously replicating vectors in mammalian cells Gene Therapy 1996 3: 503–512

    CAS  PubMed  Google Scholar 

  19. Kelleher ZT et al. Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells Nature Biotechnol 1998 16: 762–768

    Article  CAS  Google Scholar 

  20. Calos MP . The potential of extrachromosomal replicating vectors for gene therapy Trends Genet 1996 12: 463–466

    Article  CAS  PubMed  Google Scholar 

  21. Cooper M et al. Safety-modified episomal vectors for human gene therapy Proc Natl Acad Sci USA 1997 94: 6450–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma IM, Somia N . Gene therapy: promises. Problems Prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  23. Lui D, Saltzman WM . Synthetic DNA delivery systems Nature Biotechnol 2000 18: 33–37

    Article  Google Scholar 

  24. Mountain A . Gene therapy: the first decade Trends Biotechnol 2000 18: 119–128

    Article  CAS  PubMed  Google Scholar 

  25. Yates JL, Warren N, Reisman D, Sugden BA . A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells Proc Natl Acad Sci USA 1984 81: 3806–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wendelburg BJ, Vos J-M . An enhanced EBNA1 variant with reduced GLY-ALA domain for long-term episomal maintenance and transgene expression of oriP-based plasmids in human cells Gene Therapy 1998 5: 1389–1399

    Article  CAS  PubMed  Google Scholar 

  27. DuBridge RB et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system Mol Cell Biol 1987 7: 379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DuBridge RB, Calos MP . Recombinant shuttle vectors for the study of mutation in mammalian cells Mutagenesis 1988 3: 1–9

    Article  CAS  PubMed  Google Scholar 

  29. Belt PBGM et al. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT2) using an Epstein-Barr virus-derived cDNA expression vector Nucleic Acids Res 1991 19: 4861–4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazda O, Satoh E, Yasutomi K, Imanishi J . Extremely efficient gene transfection into lympho-hematopoietic cell lines by Epstein-Barr virus-based vectors J Immunol Meth 1997 204: 143–151

    Article  CAS  Google Scholar 

  31. Banerjee S, Livanos E . Vos J.-M. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus Nature Med 1995 1: 1303–1308

    Article  CAS  PubMed  Google Scholar 

  32. Yates JL, Warren N, Sugden B . Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells Nature 1985 313: 812–815

    Article  CAS  PubMed  Google Scholar 

  33. Lindenboim L, Anderson D, Stein R . The use of Epstein-Barr virus-based shuttle vectors in rat PC12 cells Cell Mol Neurobiol 1997 17: 119–127

    Article  CAS  PubMed  Google Scholar 

  34. Tsukamoto H et al. Enhanced expression of recombinant dystrophin following intramuscular injection of Epstein-Barr virus (EBV)-based mini-chromosome vectors in mdx mice Gene Therapy 1999 6: 1331–1335

    Article  CAS  PubMed  Google Scholar 

  35. Stoll SM, Sclimenti CR, Baba EJ . Epstein-Barr virus/human vector provides high-level, long-term expression of α1-antitrypsin in mice Mol Therapy 2001 4: 122–129

    Article  CAS  Google Scholar 

  36. Sun TQ, Livanos E, Vos J-M . Engineering a mini-herpesvirus as a general strategy to transduce up to 180 kb of functional self-replicating human mini-chromosomes Gene Therapy 1996 3: 1081–1088

    CAS  PubMed  Google Scholar 

  37. Little RD, Schildkraut CL . Initiation of latent DNA replication in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin Mol Cell Biol 1995 15: 2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aladjem MI et al. Participation of the human beta-globin locus control region in initiation of DNA replication Science 1995 270: 815–819

    Article  CAS  PubMed  Google Scholar 

  39. Sierakowska H, Sambade MJ, Agrawal S, Kole R . Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides Proc Natl Acad Sci USA 1996 93: 12840–12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perou CM, Justice MJ, Pryor RJ, Kaplan J . Complementation of the beige mutation in cultured cells by episomally replicating murine yeast artificial chromosomes Proc Natl Acad Sci USA 1996 93: 5905–5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ellis J, Pannell D . The beta-globin locus control region versus gene therapy vectors: a struggle for expression Clin Genet 2001 59: 17–24

    Article  CAS  PubMed  Google Scholar 

  42. Yates JL . Epstein-Barr virus DNA replication DePamphilis ML (eds); DNA Replication in Eukaryotic Cells Cold Spring Harbor Press 1996 pp 751–773

  43. Krysan PJ, Calos MP . Epstein-Barr virus-based vectors that replicate in rodent cells Gene 1993 136: 137–143

    Article  CAS  PubMed  Google Scholar 

  44. DePamphilis ML . Origins of DNA replication DePamphilis ML (eds); DNA Replication in Eukaryotic Cells Cold Spring Harbor Press 1996 pp 45–87

  45. Lutfalla G, Armbruster L, Dequin S, Bertolotti R . Construction of an EBNA-producing line of well-differentiated human hepatoma cells and of appropriate Epstein-Barr virus-based shuttle vectors Gene 1989 76: 27–39

    Article  CAS  PubMed  Google Scholar 

  46. Langle-Rouault F et al. Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids J Virol 1998 72: 6181–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Horlick RA et al. Combinatorial gene expression using multiple episomal vectors Gene 2000 243: 187–194

    Article  CAS  PubMed  Google Scholar 

  48. May C et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin Nature 2000 406: 82–86

    Article  CAS  PubMed  Google Scholar 

  49. Dalle B et al. Improvement of mouse beta-thalassemia upon erythropoietin delivery by encapsulated myoblasts Gene Therapy 1999 6: 157–161

    Article  CAS  PubMed  Google Scholar 

  50. Payen E et al. Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA Exp Hematol 2001 29: 295–300

    Article  CAS  PubMed  Google Scholar 

  51. Bohl D et al. Improvement of erythropoiesis in beta-thalassemic mice by continuous erythropoietin delivery from muscle Blood 2000 95: 2793–2798

    CAS  PubMed  Google Scholar 

  52. Peterson KR . Production and analysis of transgenic mice containing yeast artificial chromosomes Genetic Engineer 1997 19: 235–255

    Article  CAS  Google Scholar 

  53. Dillon N, Grosveld F . Chromatin domains as potential units of eukaryotic gene function Curr Opin Genet Dev 1994 4: 260–264

    Article  CAS  PubMed  Google Scholar 

  54. Wolffe AP . Chromatin structure and DNA replication: implications for transcriptional activity DePamphilis ML (eds); DNA Replication in Eukaryotic Cells Cold Spring Harbor Press 1996 pp 271–293

  55. Mucke S et al. Suitability of Epstein-Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells Gene Therapy 1997 4: 82–92

    Article  CAS  PubMed  Google Scholar 

  56. Garret M, McHendry RB, Spickofsky N, Margolskee RF . Isolation of a clone which induces expression of the gene encoding the human tumor necrosis factor receptor Gene 1992 111: 215–222

    Article  CAS  PubMed  Google Scholar 

  57. Fichard A et al. Human recombinant alpha 1 (V) collagen chain. Homo-trimeric assembly and subsequent processing J Biol Chem 1997 272: 30083–30087

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, J., Vos, JM. Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic β-globin in cultured murine fibroblasts. Gene Ther 9, 1447–1454 (2002). https://doi.org/10.1038/sj.gt.3301808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301808

Keywords

This article is cited by

Search

Quick links