Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell fate determination from stem cells

Abstract

In the adult, tissue-specific stem cells are thought to be responsible for the replacement of differentiated cells within continuously regenerating tissues, such as the liver, skin, and blood system. In this review, we will consider the factors that influence stem cell fate, taking as a primary example the cell fate determination of hematopoietic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wu A, Till J, Siminovitch L, McCulloch E . A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells J Cell Physiol 1967 69: 177–184

    Article  CAS  PubMed  Google Scholar 

  2. Wu A, Till J, Siminovitch L, McCulloch E . Cytological evidence for a relationship between normal hematopoietic colony-forming cells and cells of the lymphoid system J Exp Med 1968 127: 455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Till J, McCulloch E . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells Radiat Res 1961 14: 1419–1430

    Article  Google Scholar 

  4. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype Immunity 1994 1: 661–673

    Article  CAS  PubMed  Google Scholar 

  5. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells Science 1988 241: 58–62

    Article  CAS  PubMed  Google Scholar 

  6. Morrison SJ et al. Identification of a lineage of multipotent hematopoietic progenitors Development 1997 124: 1929–1939

    Article  CAS  PubMed  Google Scholar 

  7. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages Nature 2000 404: 193–197

    Article  CAS  PubMed  Google Scholar 

  8. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow Cell 1997 91: 661–672

    Article  CAS  PubMed  Google Scholar 

  9. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL . The purification and characterization of fetal liver hematopoietic stem cells Proc Natl Acad Sci USA 1995 92: 10302–10306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jordan CT . Cellular and developmental properties of fetal hematopoietic stem cells Cell 1990 61: 953–963

    Article  CAS  PubMed  Google Scholar 

  11. Jordan CT et al. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation Exp Hematol 1995 23: 1011–1015

    CAS  PubMed  Google Scholar 

  12. Holyoake TL, Nicolini FE, Eaves CJ . Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow Exp Hematol 1999 27: 1418–1427

    Article  CAS  PubMed  Google Scholar 

  13. Rebel VI, Miller CL, Eaves CJ, Lansdorp PM . The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts Blood 1996 87: 3500–3507

    Article  CAS  PubMed  Google Scholar 

  14. Pawliuk R, Eaves C, Humphries RK . Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo Blood 1996 88: 2852–2858

    Article  CAS  PubMed  Google Scholar 

  15. Harrison DE et al. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term Exp Hematol 1997 25: 293–297

    CAS  PubMed  Google Scholar 

  16. Traver D et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets Blood 2001 98: 627–635

    Article  CAS  PubMed  Google Scholar 

  17. Mebius RE et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, cd45(+)cd4(+)cd3(-) cells, as well as macrophages J Immunol 2001 166: 6593–6601

    Article  CAS  PubMed  Google Scholar 

  18. Hayakawa K, Hardy RR, Parks DR, Herzenberg LA . The ‘Ly-1 B’ cell subpopulation in normal immunodefective, and autoimmune mice J Exp Med 1983 157: 202–218

    Article  CAS  PubMed  Google Scholar 

  19. Ikuta K et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells Cell 1990 62: 863–874

    Article  CAS  PubMed  Google Scholar 

  20. Havran WL, Allison JP . Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors Nature 1988 335: 443–445

    Article  CAS  PubMed  Google Scholar 

  21. Metcalf D, Burgess AW . Clonal analysis of progenitor cell commitment of granulocyte or macrophage production J Cell Physiol 1982 111: 275–283

    Article  CAS  PubMed  Google Scholar 

  22. Kaushansky K et al. Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development Proc Natl Acad Sci USA 1995 92: 3234–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kondo M et al. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice Immunity 1997 7: 155–162

    Article  CAS  PubMed  Google Scholar 

  24. Kondo M et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines Nature 2000 407: 383–386

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa M . Differentiation and proliferation of hematopoietic stem cells Blood 1993 81: 2844–2853

    Article  CAS  PubMed  Google Scholar 

  26. Enver T, Heyworth CM, Dexter TM . Do stem cells play dice? Blood 1998 92: 348–351

    Article  CAS  PubMed  Google Scholar 

  27. Domen J, Weissman IL . Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other J Exp Med 2000 192: 1707–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakauchi H, Takano H, Ema H, Osawa M . Further characterization of CD34-low/negative mouse hematopoietic stem cells Ann NY Acad Sci 1999 57–66

    Article  CAS  PubMed  Google Scholar 

  29. Thorsteinsdottir U, Sauvageau G, Humphries RK . Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size Blood 1999 94: 2605–2612

    Article  CAS  PubMed  Google Scholar 

  30. Sauvageau G et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo Genes Dev 1995 9: 1753–1765

    Article  CAS  PubMed  Google Scholar 

  31. Karanu FN et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells J Exp Med 2000 192: 1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varnum-Finney B et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling Nat Med 2000 6: 1278–1281

    Article  CAS  PubMed  Google Scholar 

  33. Bhardwaj G et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation Nat Immunol 2001 2: 172–180

    Article  CAS  PubMed  Google Scholar 

  34. Goff JP, Shields DS, Greenberger JS . Influence of cytokines on the growth kinetics and immunophenotype of daughter cells resulting from the first division of single CD34(+)Thy-1(+)lin- cells Blood 1998 92: 4098–4107

    Article  CAS  PubMed  Google Scholar 

  35. Ema H, Takano H, Sudo K, Nakauchi H . In vitro self-renewal division of hematopoietic stem cells J Exp Med 2000 192: 1281–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yagi M et al. Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin Proc Natl Acad Sci USA 1999 96: 8126–8131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bryder D, Jacobsen SE . Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro Blood 2000 96: 1748–1755

    Article  CAS  PubMed  Google Scholar 

  38. Luskey BD, Rosenblatt M, Zsebo K, Williams DA . Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells Blood 1992 80: 396–402

    Article  CAS  PubMed  Google Scholar 

  39. Huang S et al. Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules Blood 1999 94: 2595–2604

    Article  CAS  PubMed  Google Scholar 

  40. Cheshier SH, Morrison SJ, Liao X, Weissman IL . In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells Proc Natl Acad Sci USA 1999 96: 3120–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Domen J, Cheshier SH, Weissman IL . The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential J Exp Med 2000 191: 253–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thiemann FT et al. The murine stromal cell line AFT024 acts specifically on human CD34+CD38- progenitors to maintain primitive function and immunophenotype in vitro Exp Hematol 1998 26: 612–619

    CAS  PubMed  Google Scholar 

  43. Moore KA, Ema H, Lemischka IR . In vitro maintenance of highly purified, transplantable hematopoietic stem cells Blood 1997 89: 4337–4347

    Article  CAS  PubMed  Google Scholar 

  44. Harrison DE . Competitive repopulation in unirradiated normal recipients Blood 1993 81: 2473–2474

    Article  CAS  PubMed  Google Scholar 

  45. Takada A, Takada Y, Ambrus JL . Proliferation of donor spleen and bone-marrow cells in the spleens and bone marrows of unirradiated and irradiated adult mice Proc Soc Exp Biol Med 1971 136: 222–226

    Article  CAS  PubMed  Google Scholar 

  46. Muller-Sieburg CE, Deryugina E . The stromal cells’ guide to the stem cell universe Stem Cells 1995 13: 477–486

    Article  CAS  PubMed  Google Scholar 

  47. Koller MR, Palsson MA, Manchel I, Palsson BO . Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects Blood 1995 86: 1784–1793

    Article  CAS  PubMed  Google Scholar 

  48. Gan OI, Murdoch B, Larochelle A, Dick JE . Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells Blood 1997 90: 641–650

    Article  CAS  PubMed  Google Scholar 

  49. Breems DA et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells Blood 1998 91: 111–117

    Article  CAS  PubMed  Google Scholar 

  50. Bennaceur-Griscelli A et al. Stromal cells retard the differentiation of CD34(+)CD38(low/neg) human primitive progenitors exposed to cytokines independent of their mitotic history Blood 2001 97: 435–441

    Article  CAS  PubMed  Google Scholar 

  51. Sitnicka E, Wang QR, Tsai S, Wolf NS . Support versus inhibition of hematopoiesis by two characterized stromal cell types Stem Cells 1995 13: 655–665

    Article  CAS  PubMed  Google Scholar 

  52. Lewis ID et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system Blood 2001 97: 3441–3449

    Article  CAS  PubMed  Google Scholar 

  53. Verfaillie CM, Catanzaro P . Direct contact with stroma inhibits proliferation of human long-term culture initiating cells Leukemia 1996 10: 498–504

    CAS  PubMed  Google Scholar 

  54. McCulloch E et al. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld Blood 1965 26: 399–410

    Article  CAS  PubMed  Google Scholar 

  55. Bernstein A et al. The murine W/c-kit and Steel loci and the control of hematopoiesis Semin Hematol 1991 28: 138–142

    CAS  PubMed  Google Scholar 

  56. Fried W et al. Studies on the defective haematopoietic microenvironment of Sl/Sl d mice Br J Haematol 1973 24: 643–650

    Article  CAS  PubMed  Google Scholar 

  57. Dexter TM, Moore MA . In vitro duplication and ‘cure’ of haemopoietic defects in genetically anaemic mice Nature 1977 269: 412–414

    Article  CAS  PubMed  Google Scholar 

  58. Barker JE . Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects Exp Hematol 1997 25: 542–547

    CAS  PubMed  Google Scholar 

  59. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED . Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero Exp Hematol 1999 27: 1569–1575

    Article  CAS  PubMed  Google Scholar 

  60. Wong PM, Chung SW, Chui DH, Eaves CJ . Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac Proc Natl Acad Sci USA 1986 83: 3851–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoder MC et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac Immunity 1997 7: 335–344

    Article  CAS  PubMed  Google Scholar 

  62. Weissman I, Papaioannou V, Gardner R . Fetal hematopoietic origins of the adult hematolymphoid system Clarkson B, Mark P, Till J (eds); Differentiation of Normal and Neoplastic Hematopoietic Cells Cold Spring Harbor Laboratory Press 1978 pp 33–47

  63. Toles JF et al. Hemopoietic stem cells in murine embryonic yolk sac and peripheral blood Proc Natl Acad Sci USA 1989 86: 7456–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moore MA, Metcalf D . Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo Br J Haematol 1970 18: 279–296

    Article  CAS  PubMed  Google Scholar 

  65. Huang H, Auerbach R . Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo Proc Natl Acad Sci USA 1993 90: 10110–10114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F . Potential intraembryonic hemogenic sites at pre-liver stages in the mouse Anat Embryol (Berl) 1995 192: 425–435

    Article  CAS  Google Scholar 

  67. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region Cell 1996 86: 897–906

    Article  CAS  PubMed  Google Scholar 

  68. Muller AM et al. Development of hematopoietic stem cell activity in the mouse embryo Immunity 1994 1: 291–301

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez MJ, Holmes A, Miles C, Dzierzak E . Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo Immunity 1996 5: 513–525

    Article  CAS  PubMed  Google Scholar 

  70. Johnson GR, Moore MA . Role of stem cell migration in initiation of mouse foetal liver haemopoiesis Nature 1975 258: 726–728

    Article  CAS  PubMed  Google Scholar 

  71. Houssaint E . Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line Cell Differ 1981 10: 243–252

    Article  CAS  PubMed  Google Scholar 

  72. Gowans J, Knight E . The route of recirculation of lymphocytes in the rat Phil Trans R Soc Lond B 1964 159: 257–282

    CAS  Google Scholar 

  73. Gowans J . Life-span, recirculation, and transformation of lymphocytes Inter Rev Exp Path 1966 5: 1–24

    CAS  Google Scholar 

  74. Weissman IL . Thymus cell migration J Exp Med 1967 126: 291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morrison SJ, Wright DE, Weissman IL . Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization Proc Natl Acad Sci USA 1997 94: 1908–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fleming WH et al. Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo Proc Natl Acad Sci USA 1993 90: 3760–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Papayannopoulou T . Hematopoietic stem/progenitor cell mobilization. A continuing quest for etiologic mechanisms Ann NY Acad Sci 1999 872: 187–197

    Article  CAS  PubMed  Google Scholar 

  78. Gage FH et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain Proc Natl Acad Sci USA 1995 92: 11879–11883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ray J, Peterson DA, Schinstine M, Gage FH . Proliferation, differentiation, and long-term culture of primary hippocampal neurons Proc Natl Acad Sci USA 1993 90: 3602–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Palmer TD, Ray J, Gage FH . FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain Mol Cell Neurosci 1995 6: 474–486

    Article  CAS  PubMed  Google Scholar 

  81. Morrison SJ, White PM, Zock C, Anderson DJ . Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells Cell 1999 96: 737–749

    Article  CAS  PubMed  Google Scholar 

  82. Ramiya VK et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells Nat Med 2000 6: 278–282

    Article  CAS  PubMed  Google Scholar 

  83. Jones PH, Watt FM . Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression Cell 1993 73: 713–724

    Article  CAS  PubMed  Google Scholar 

  84. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells Science 1999 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  85. Pittenger MF, Mosca JD, McIntosh KR . Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma Curr Top Microbiol Immunol 2000 251: 3–11

    CAS  PubMed  Google Scholar 

  86. Pereira RF . Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice Proc Natl Acad Sci USA 1995 92: 4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lazarus HM et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use Bone Marrow Transplant 1995 16: 557–564

    CAS  PubMed  Google Scholar 

  88. Overturf K et al. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes Am J Pathol 1997 151: 1273–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Theise ND et al, Badve S et al, Saxena R et al, Henegariu O et al, Sell S et al, Crawford JM et al, Krause DS et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation Hepatology 2000 31: 235–240

    Article  CAS  PubMed  Google Scholar 

  90. Pavlath GK et al, Thaloor D et al, Rando TA et al, Cheong M et al, English AW et al, Zheng B et al. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities Dev Dyn 1998 212: 495–508

    Article  CAS  PubMed  Google Scholar 

  91. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275: 964–967

    Article  CAS  PubMed  Google Scholar 

  92. Takahashi T et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization Nat Med 1999 5: 434–438

    Article  CAS  PubMed  Google Scholar 

  93. Asahara T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization Circ Res 1999 85: 221–228

    Article  CAS  PubMed  Google Scholar 

  94. Mezey E et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow Science 2000 290: 1779–1782

    Article  CAS  PubMed  Google Scholar 

  95. Brazelton TR, Rossi FM, Keshet GI, Blau HM . From marrow to brain: expression of neuronal phenotypes in adult mice Science 2000 290: 1775–1779

    Article  CAS  PubMed  Google Scholar 

  96. Eglitis MA, Mezey E . Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice Proc Natl Acad Sci USA 1997 94: 4080–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors Science 1998 279: 1528–1530

    Article  CAS  PubMed  Google Scholar 

  98. Bittner RE et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice Anat Embryol (Berl) 1999 199: 391–396

    Article  CAS  Google Scholar 

  99. Gussoni E et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation Nature 1999 401: 390–394

    CAS  PubMed  Google Scholar 

  100. Orlic D . Transplanted adult bone marrow cells repair myocardial infarcts in mice Ann NY Acad Sci 2001 938: 221–229

    Article  CAS  PubMed  Google Scholar 

  101. Alison MR et al. Hepatocytes from non-hepatic adult stem cells Nature 2000 406: 257

    Article  CAS  PubMed  Google Scholar 

  102. Petersen BE et al. Bone marrow as a potential source of hepatic oval cells Science 1999 284: 1168–1170

    Article  CAS  PubMed  Google Scholar 

  103. Bjornson CR et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo Science 1999 283: 534–537

    Article  CAS  PubMed  Google Scholar 

  104. Jackson KA, Mi T, Goodell MA . Hematopoietic potential of stem cells isolated from murine skeletal muscle Proc Natl Acad Sci USA 1999 96: 14482–14486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peichev M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors Blood 2000 95: 952–958

    Article  CAS  PubMed  Google Scholar 

  106. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells Blood 1998 92: 362–367

    Article  CAS  PubMed  Google Scholar 

  107. Kuznetsov SA et al. Circulating skeletal stem cells J Cell Biol 2001 153: 1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsui Y, Zsebo K, Hogan BL . Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture Cell 1992 70: 841–847

    Article  CAS  PubMed  Google Scholar 

  109. Lagasse E et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo Nat Med 2000 6: 1229–1234

    Article  CAS  PubMed  Google Scholar 

  110. Lagasse E et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo Wright DE et al. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagers, A., Christensen, J. & Weissman, I. Cell fate determination from stem cells. Gene Ther 9, 606–612 (2002). https://doi.org/10.1038/sj.gt.3301717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301717

Keywords

This article is cited by

Search

Quick links