Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA

Abstract

A unique method for formulation of plasmid DNA with phospholipids has been devised for the purpose of producing vehicles that can mediate gene delivery and transfection of living cells. The polycation, spermine, was used to condense plasmid DNA within a water-in-chloroform emulsion stabilized by phospholipids. After organic solvent removal, the particles formed could be extruded to a number average size of about 200 nm and retained DNA that was protected from nuclease digestion. This resulted in a relatively high protected DNA-to-lipid ratio of approximately 1 μg DNA/μmol lipid. The size distribution of the preparation was relatively homogeneous as judged by light microscopy and quasi-elastic light scattering. Electron microscopic studies showed structural heterogeneity, but suggested that at least some of the plasmid DNA in this preparation was in the form of the previously observed spermine-condensed bent rods and toroids and was encapsulated within liposomal membranes. Preparations with the fusogenic phospholipid composition, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoyl/ 1,2-dioleoyl-sn-glycero-3-phosphocholine, showed transfection activity for several cells lines, particularly OVCAR-3 cells. The transfection activity sedimented with the lipid during centrifugation, confirming the association of active plasmid DNA with phospholipids. Transfection efficiency in culture was found to be of the same order of magnitude as cationic lipoplexes but much less toxic to the cells. Significant transfection of OVCAR-3 cells in tissue culture could also be observed, even in the presence of the intraperitoneal fluid from a mouse with an OVCAR-3 ascites tumor. These data indicate a new type of liposomal gene delivery system devoid of cationic lipids, phosphatidylethanolamine, cationic polymers and viral components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Duque MDP, Sánchez-Prieto R, Lleonart M, Cajal SRY . Perspectives in gene therapy Histol Histopathol 1998 13: 231–242

    Google Scholar 

  2. Runnebaum IB . Basics of cancer gene therapy Anticancer Res 1997 17: 2887–2890

    CAS  PubMed  Google Scholar 

  3. Wolff JA, Malone RW, Williams P, Chong W . Direct gene transfer into mouse muscle in vivo Science 1990 247: 1465–1468

    Article  CAS  PubMed  Google Scholar 

  4. Robbins PD, Tahara H, Ghivizzani SC . Viral vectors for gene therapy Trends Biotech 1998 16: 35–40

    Article  CAS  Google Scholar 

  5. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer J Biol Chem 1996 271: 8481–8487

    Article  CAS  PubMed  Google Scholar 

  7. Felgner PL, Gadek TR, Holm M, Roman R . Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure Proc Natl Acad Sci USA 1987 84: 7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Felgner PL et al. Nomenclature for synthetic gene delivery systems Hum Gene Therapy 1997 8: 511–512

    Article  CAS  Google Scholar 

  9. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zabner J et al. Cellular and molecular barriers to gene transfer by a cationic lipid J Biol Chem 1995 270: 18997–19007

    Article  CAS  PubMed  Google Scholar 

  11. Pollard H et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus of mammalian cells J Biol Chem 1998 273: 7507–7511

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Szoka FC Jr . Mechanism of DNA release from cationic liposme/DNA complexes used in cell transfection Biochemistry 1996 35: 5616–5623

    Article  CAS  PubMed  Google Scholar 

  13. Zanta MA, Belguise-Valladier P, Behr J-P . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus Proc Natl Acad Sci USA 1999 96: 91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahl PL, Bhatia SK, Meers P, Roberts P . Enhancement of the in vivo circulation lifetime of L-a-distearoylphosphatidylcholine liposomes – importance of liposomal aggregation versus complement opsonization Biochim Biophys Acta 1997 1329: 370–382

    Article  CAS  PubMed  Google Scholar 

  15. Wilschut J, Düzgünes N, Papahadjopoulos D . Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature Biochemistry 1981 20: 3126–3133

    Article  CAS  PubMed  Google Scholar 

  16. Bentz J, Düzgünes N . Fusogenic capacities of divalent cations and effect of liposome size Biochemistry 1985 24: 5436–5443

    Article  CAS  PubMed  Google Scholar 

  17. Vitiello L, Chonn A, Wasserman JD, Duff C . Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into establlished and primary muscle cells Gene Therapy 1996 3: 396–404

    CAS  PubMed  Google Scholar 

  18. Chattoraj DK, Gosule LC, Schellman JA . DNA condensation with polyamines. II. Electron microscopic studies J Mol Biol 1978 121: 327–337

    Article  CAS  PubMed  Google Scholar 

  19. Gosule LC, Schellman JA . Compact form of DNA induced by spermidine Nature 1976 259: 333–335

    Article  CAS  PubMed  Google Scholar 

  20. Widom J, Baldwin RL . Cation-induced toroidal condensation of DNA J Mol Biol 1980 144: 431–453

    Article  CAS  PubMed  Google Scholar 

  21. Arscott PG, Li A, Bloomfield VA . Condensation of DNA by trivalent cations. 1. effects of DNA length and topology on the size and shape of condensed particles Biopolymers 1990 30: 619–630

    Article  CAS  PubMed  Google Scholar 

  22. Wilson RW, Bloomfield VA . Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study Biochemistry 1979 18: 2192–2196

    Article  CAS  PubMed  Google Scholar 

  23. Ames BN, Dubin DT . The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid J Biol Chem 1960 253: 769–775

    Google Scholar 

  24. Tabor CW, Tabor H . Polyamines Annu Rev Biochem 1984 53: 749–790

    Article  CAS  PubMed  Google Scholar 

  25. Flink I, Pettijhon DE . Polyamines stabilise DNA folds Nature 1975 253: 62–64

    Article  CAS  PubMed  Google Scholar 

  26. Hafner EW, Tabor CW, Tabor H . Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine J Biol Chem 1979 254: 12419–12426

    CAS  PubMed  Google Scholar 

  27. Pegg AE . Recent advances in the biochemistry of polyamines in eukaryotes Biochem J 1986 234: 249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger LE, Morris DR . Stimulation of deoxyribonucleic acid replication fork movement by spermidine analogs in polyamine-deficient Escherichia coli J Bacteriol 1980 141: 1192–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurland CG . Translational accuracy in vitro Cell 1982 28: 201–203

    Article  CAS  PubMed  Google Scholar 

  30. Russell DH . Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis Proc Natl Acad Sci USA 1983 80: 1318–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moussatch JN . Polyamines stimulate DNA-dependent RNA synthesis catalyzed by vaccinia virus Biochim Biophys Acta 1985 826: 113–120

    Article  Google Scholar 

  32. Baeza I, Gariglio P, Rangel LM, Chavez P . Electron microscopy and biochemical properties of polyamine-conpacted DNA Biochemistry 1987 26: 6387–6392

    Article  CAS  PubMed  Google Scholar 

  33. Shangguan T, Pak CC, Shaukat A, Janoff AS . Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine Biochim Biophys Acta 1998 1368: 171–183

    Article  CAS  PubMed  Google Scholar 

  34. Wheeler CJ, Sukhu L, Yang G, Tsai Y . Converting an alcohol to an amine in a cationic lipid dramatically alters the co-lipid requirement, cellular transfection activity and the ultrastructure of DNA–cytofectin complexes Biochim Biophys Acta 1996 1280: 1–11

    Article  PubMed  Google Scholar 

  35. Gruner SM, Lenk RP, Janoff AS, Ostro MJ . Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles Biochemistry 1984 24: 2833–2842

    Article  Google Scholar 

  36. Szoka F, Papahadjopoulos D . Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation Proc Natl Acad Sci USA 1978 75: 4194–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bru R, Sanchez-Ferrer A, Garcia-Carmona F . Kinetics models of reverse micelles Biochem J 1995 310: 721–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fletcher PDI, Howe AM, Robinson BH . The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion J Chem Soc Faraday Trans I 1987 83: 985–1006

    Article  CAS  Google Scholar 

  39. Bru R, GarcRa-Carmona F . Trypsin-SBTI interaction in reverse micelles: a slow intermicellar exchange-dependent binding FEBS Lett 1991 282: 170–174

    Article  CAS  PubMed  Google Scholar 

  40. Dunlap DD, Maggi A, Sora MR, Monaco L . Nanoscopic structure of DNA condensed for gene delivery Nucleic Acids Res 1997 25: 3095–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang D, Jennelle RS, Shi Z, Garver RI Jr . Overexpression of adenovirus-encoded transgenes from the cytomegalovirus immediate early promoter in irradiated tumor cells Hum Gene Ther 1997 8: 2117–2124

    Article  CAS  PubMed  Google Scholar 

  42. Dion LD, Goldsmith KT, Tang D, Engler JA . Amplification of recombinant adenoviral transgene products occurs by inhibition of histone deacetylase Virology 1997 231: 201–209

    Article  CAS  PubMed  Google Scholar 

  43. Tang D, Johnston SA, Carbone DP . Butyrate-inducible and tumor restricted gene expression by adenovirus vectors Cancer Gene Ther 1994 1: 15–20

    CAS  PubMed  Google Scholar 

  44. Fraley R, Subramani S, Berg P, Papahadjopoulos D . Introduction of liposome-encapsulated SV 40 DNA into cells J Biol Chem 1980 255: 10431–10435

    CAS  PubMed  Google Scholar 

  45. AliZo SF, Garcia-Sanz M, Irruarrizaga A . High encapsulation efficiencies in sized liposomes produced by extrusion of dehydration-rehydration vesicles J Microencap 1990 7: 497–503

    Article  Google Scholar 

  46. Monnard P, Oberholzer T, Luisi P . Entrapment of nucleic acids in liposomes Biochem Biophys Acta 1997 1329: 39–50

    Article  CAS  PubMed  Google Scholar 

  47. Baeza I, Ibáñez M, Wong C, Chávez P . Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA Ori Life Evol Biosphere 1992 21: 225–252

    Article  CAS  Google Scholar 

  48. Ibáñez M, Gariglio P, Chávez P, Santiago R . Spermidine-condensed DNA and cone-shaped lipids improve delivery and expression of exogenous DNA transfer by liposomes Biochem Cell Biol 1996 74: 633–643

    Article  PubMed  Google Scholar 

  49. Tikchonenko TI et al. Transfer of condensed viral DNA into eukaryotic cells using proteoliposomes Gene 1988 63: 321–330

    Article  CAS  PubMed  Google Scholar 

  50. Jaffe EM et al. High efficiency gene transfer into primary human tumor explants without cell selection Cancer Res 1993 53: 2221–2226

    Google Scholar 

  51. Philip R et al. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes Mol Cell Biol 1994 14: 2411–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muldoon RR et al. Tracking and quantitiation of retroviral-mediated transfer using a completely humanized, red-shifted green fluorescent protein gene Biotechniques 1997 22: 162–167

    Article  CAS  PubMed  Google Scholar 

  53. Baumann CG, Bloomfield VA . Large-scale purification of plasmid DNA for biophysical and molecular biology studies Biotechniques 1995 19: 884–890

    CAS  PubMed  Google Scholar 

  54. Gosule LC, Schellman JA . DNA condensation with polyamines J Mol Biol 1978 121: 327–337

    Article  PubMed  Google Scholar 

  55. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor Laboratory: Cold Spring Harbor, NY 1989 pp B4–B5

  56. Haugland RP . Handbook of Fluorescent Probes and Research Chemicals6th edn Molecular Probes, Inc: Eugene, OR 1996 pp 161–162

  57. Gao X, Huang L . A novel cationic liposome reagent for efficient transfection of mammalian cells Biochem Biophys Res Commun 1992 179: 280–285

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Walter Perkins and Xingong Li for advice and technical support for electron microscopy. We thank Dr Eric Mayhew, Dr Imran Ahmad, Gregg Masters and Patty Roberts for advice regarding animal studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shangguan, T., Cabral-Lilly, D., Purandare, U. et al. A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA. Gene Ther 7, 769–783 (2000). https://doi.org/10.1038/sj.gt.3301156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301156

Keywords

This article is cited by

Search

Quick links