Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia

Abstract

The chromosome 21q22.11 cytokine receptor cluster contains four genes that encode subunits of the receptors for the cytokines interleukin-10 and interferon-alpha, -beta and -gamma that may have a role in malaria pathogenesis. A total of 15 polymorphic markers located within these genes were initially genotyped in 190 controls and 190 severe malaria cases from The Gambia. Two interferon-alpha receptor-1 (IFNAR1) gene SNPs (17470 and L168 V) showed evidence for an association with severe malaria phenotypes and were typed in a larger series of samples comprising 538 severe malaria cases, 338 mild malaria cases and 562 controls. Both the 17470-G/G and L168V-G/G genotypes were associated with protection against severe malaria, in general, and cerebral malaria, in particular (P=0.004 and 0.003, respectively). IFNAR1 diplotypes were then constructed for these two markers using the PHASE software package. The (17470-G L168V-G/17470-G L168V-G) diplotype was found to be associated with a reduced risk of cerebral malaria and the (17470-C L168V-C/17470-G L168V-G) diplotype with an increased risk of cerebral malaria (overall 3 × 2 χ2=12.8, d.f.=2, P=0.002 and 3 × 2 χ2=15.2, d.f.=2, P=0.0005, respectively). These data suggest a role for the type I interferon pathway in resistance to cerebral malaria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Butler D, Maurice J, O'Brien C . Time to put malaria control on the global agenda [news] [see comments]. Nature 1997; 386: 535–536.

    Article  CAS  Google Scholar 

  2. Rihet P, Traoré Y, Abel L, Aucan C, Traoré-Leroux T, Fumoux F . Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31–q33. Am J Hum Genet 1998; 63: 498–505.

    Article  CAS  Google Scholar 

  3. Jepson A, Sisay JF, Banya W et al. Genetic linkage of mild malaria to the major histocompatibility complex in Gambian children: study of affected sibling pairs. BMJ 1997; 315: 96–97.

    Article  CAS  Google Scholar 

  4. Hill AV . The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2001; 2: 373–400.

    Article  CAS  Google Scholar 

  5. Kwiatkowski D, Hill AV, Sambou I et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 1990; 336: 1201–1204.

    Article  CAS  Google Scholar 

  6. Grau GE, Taylor TE, Molyneux ME et al. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med 1989; 320: 1586–1591.

    Article  CAS  Google Scholar 

  7. Lucas R, Lou J, Morel DR, Ricou B, Suter PM, Grau GE . TNF receptors in the microvascular pathology of acute respiratory distress syndrome and cerebral malaria. J Leukoc Biol 1997; 61: 551–558.

    Article  CAS  Google Scholar 

  8. Koch O, Awomoyi A, Usen S et al. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J Infect Dis 2002; 185: 1684–1687.

    Article  CAS  Google Scholar 

  9. Langer JA, Rashidbaigi A, Lai LW, Patterson D, Jones C . Sublocalization on chromosome 21 of human interferon-alpha receptor gene and the gene for an interferon-gamma response protein. Somat Cell Mol Genet 1990; 16: 231–240.

    Article  CAS  Google Scholar 

  10. Lutfalla G, Holland SJ, Cinato E et al. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. EMBO J 1995; 14: 5100–5108.

    Article  CAS  Google Scholar 

  11. Reboul J, Gardiner K, Monneron D, Uze G, Lutfalla G . Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. Genome Res 1999; 9: 242–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Luty AJ, Lell B, Schmidt OR et al. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis 1999; 179: 980–988.

    Article  CAS  Google Scholar 

  13. Ferreira A, Schofield L, Enea V et al. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 1986; 232: 881–884.

    Article  CAS  Google Scholar 

  14. Herrera MA, Rosero F, Herrera S et al. Protection against malaria in Aotus monkeys immunized with a recombinant blood-stage antigen fused to a universal T-cell epitope: correlation of serum gamma interferon levels with protection. Infect Immun 1992; 60: 154–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurtis JD, Lanar DE, Opollo M, Duffy PE . Interleukin-10 responses to liver-stage antigen 1 predict human resistance to Plasmodium falciparum. Infect Immun 1999; 67: 3424–3429.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Othoro C, Lal AA, Nahlen B, Koech D, Orago AS, Udhayakumar V . A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya [see comments]. J Infect Dis 1999; 179: 279–282.

    Article  CAS  Google Scholar 

  17. May J, Lell B, Luty AJ, Meyer CG, Kremsner PG . Plasma interleukin-10:tumor necrosis factor (TNF)-alpha ratio is associated with TNF promoter variants and predicts malarial complications. J Infect Dis 2000; 182: 1570–1573.

    Article  CAS  Google Scholar 

  18. Riley EM, Olerup O, Troye-Blomberg M . The immune recognition of Malaria antigens. Parasitol Today 1991; 7: 5–11.

    Article  CAS  Google Scholar 

  19. Bogdan C . The function of type I interferons in antimicrobial immunity. Curr Opin Immunol 2000; 12: 419–424.

    Article  CAS  Google Scholar 

  20. Vigario AM, Belnoue E, Cumano A et al. Inhibition of Plasmodium yoelii blood-stage malaria by interferon alpha through the inhibition of the production of its target cell, the reticulocyte. Blood 2001; 97: 3966–3971.

    Article  CAS  Google Scholar 

  21. Sturchler D, Berger R, Etlinger H et al. Effects of interferons on immune response to a synthetic peptide malaria sporozoite vaccine in non-immune adults. Vaccine 1989; 7: 457–461.

    Article  CAS  Google Scholar 

  22. Luty AJ, Perkins DJ, Lell B et al. Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infect Immun 2000; 68: 3909–3915.

    Article  CAS  Google Scholar 

  23. Malaguarnera L, Musumeci S . The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2002; 2: 472–478.

    Article  Google Scholar 

  24. Modiano D, Petrarca V, Sirima BS et al. Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci USA 1996; 93: 13206–13211.

    Article  CAS  Google Scholar 

  25. Hill AV, Allsopp CE, Kwiatkowski D et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352: 595–600.

    Article  CAS  Google Scholar 

  26. Aucan C, Walley AJ, Greenwood BM, Hill AV . Haptoglobin genotypes are not associated with resistance to severe malaria in The Gambia. Trans Roy Soc Trop Med Hyg 2002; 96: 327–328.

    Article  Google Scholar 

  27. Aitman TJ, Cooper LD, Norsworthy PJ et al. Malaria susceptibility and CD36 mutation. Nature 2000; 405: 1015–1016.

    Article  CAS  Google Scholar 

  28. Modiano D, Luoni G, Sirima BS et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 2001; 414: 305–308.

    Article  CAS  Google Scholar 

  29. Yan H, Krishnan K, Greenlund AC et al. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J 1996; 15: 1064–1074.

    Article  CAS  Google Scholar 

  30. Colamonici O, Yan H, Domanski P et al. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol 1994; 14: 8133–8142.

    Article  CAS  Google Scholar 

  31. Day DJ, Speiser PW, Schulze E et al. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum Mol Genet 1996; 5: 2039–2048.

    Article  CAS  Google Scholar 

  32. Hosmer DW, Lemeshow S . Applied Logistic Regression. Wiley, New York, 1989.

    Google Scholar 

  33. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  34. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust. AVSH is a Wellcome Trust Principal Research Fellow. The authors thank the many investigators involved in the original case–control study in The Gambia for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Aucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aucan, C., Walley, A., Hennig, B. et al. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia. Genes Immun 4, 275–282 (2003). https://doi.org/10.1038/sj.gene.6363962

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363962

Keywords

This article is cited by

Search

Quick links