Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1

Abstract

The EphA2 receptor tyrosine kinase is frequently overexpressed in invasive breast cancer cells. Moreover, these malignant cells have unstable cell–cell contacts, which preclude EphA2 from interacting with its ligand, EphrinA1, which is anchored to the membrane of adjacent cells. This defect is important because ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and survival, whereas the absence of ligand binding favors these same behaviors. In our present study, human adenoviral type 5 (HAd) vectors were engineered to express secreted-forms of EphrinA1. These vectors were used to infect MDA-MB-231 human breast cancer cells, or MCF-10A human breast epithelial cells providing matched controls. Infection with HAd-EphrinA1-Fc (HAd vector expressing extracellular domain of human EphrinA1 attached to Fc portion of human IgG1 heavy chain) caused increased EphA2 activation and turnover and consequently decreased tumor cell viability in soft agar assays. Consistent with this observation, infection of MDA-MB-231 cells with HAd-EphrinA1-Fc prevented tumor formation in xenograft models. Furthermore, therapeutic modeling via intratumoral inoculation revealed that HAd-EphrinA1-Fc significantly inhibited subsequent tumor growth as compared to matched controls. These results suggest that targeting of EphA2 with adenoviral vectors may have therapeutic value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dickson RB, Lippman ME . Growth factors in breast cancer. Endocr Rev. 1995;16:559–589.

    Article  CAS  PubMed  Google Scholar 

  2. Zelinski DP, Zantek ND, Stewart JC, et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61:2301–2306.

    CAS  PubMed  Google Scholar 

  3. Rosenberg IM, Goke M, Kanai M, et al. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am J Physiol. 1997;273:G824–G832.

    CAS  PubMed  Google Scholar 

  4. Easty DJ, Guthrie BA, Maung K, et al. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res. 1995;55:2528–2532.

    CAS  PubMed  Google Scholar 

  5. Andres AC, Zuercher G, Djonov V, et al. Protein tyrosine kinase expression during the estrous cycle and carcinogenesis of the mammary gland. Int J Cancer. 1995;63:288–296.

    Article  CAS  PubMed  Google Scholar 

  6. Walker-Daniels J, Coffman K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate. 1999;41:275–280.

    Article  CAS  PubMed  Google Scholar 

  7. Dohn M, Jiang J, Chen X . Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene. 2001;20:6503–6515.

    Article  CAS  PubMed  Google Scholar 

  8. Miao H, Wei BR, Peehl DM, et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol. 2001;3:527–530.

    Article  CAS  PubMed  Google Scholar 

  9. Coffman KT, Hu M, Carles-Kinch K, et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res. 2003;63:7907–7912.

    CAS  PubMed  Google Scholar 

  10. Kinch MS, Carles-Kinch K . Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metast. 2003;20:59–68.

    Article  CAS  Google Scholar 

  11. Bartley TD, Hunt RW, Welcher AA, et al. B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature. 1994;368:558–560.

    Article  CAS  PubMed  Google Scholar 

  12. Zisch AH, Pazzagli C, Freeman AL, et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene. 2000;19:177–187.

    Article  CAS  PubMed  Google Scholar 

  13. Kullander K, Mather NK, Diella F, et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron. 2001;29:73–84.

    Article  CAS  PubMed  Google Scholar 

  14. Walker-Daniels J, Hess AR, Hendrix MJC, et al. Differential regulation of EphA2 in normal and malignant cells [Review]. Am J Pathol. 2003;162:1037–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koolpe M, Dail M, Pasquale EB . An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem. 2002;277:46974–46979.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart AK, Lassam NJ, Quirt IC, et al. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther. 1999;6:350–363.

    Article  CAS  PubMed  Google Scholar 

  17. Curiel DT . The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res. 2000;6:3395–3399.

    CAS  PubMed  Google Scholar 

  18. Hitt MM, Graham FL . Adenovirus vectors for human gene therapy. Adv Virus Res. 2000;55:479–505.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Huang H, Saxena A, et al. Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Ther. 2002;9:533–542.

    Article  CAS  PubMed  Google Scholar 

  20. St George JA . Gene therapy progress and prospects: adenoviral vectors [Review]. Gene Ther. 2003;10:1135–1141.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhang X, Zhang W, et al. Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8(+) cytotoxic T-cell activation and antitumor immunity. Cancer Gene Ther. 2002;9:202–208.

    Article  CAS  PubMed  Google Scholar 

  22. Ambar BB, Frei K, Malipiero U, et al. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum Gene Ther. 1999;10:1641–1648.

    Article  CAS  PubMed  Google Scholar 

  23. Parks R, Evelegh C, Graham F . Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther. 1999;6:1565–1573.

    Article  CAS  PubMed  Google Scholar 

  24. Trudel S, Li Z, Dodgson C, et al. Adenovector engineered interleukin-2 expressing autologous plasma cell vaccination after high-dose chemotherapy for multiple myeloma — a phase 1 study. Leukemia. 2001;15:846–854.

    Article  CAS  PubMed  Google Scholar 

  25. Wen XY, Mandelbaum S, Li ZH, et al. Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: preclinical studies in myeloma. Cancer Gene Ther. 2001;8:361–370.

    Article  CAS  PubMed  Google Scholar 

  26. Akbulut H, Zhang L, Tang Y, et al. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon. Cancer Gene Ther. 2003;10:388–395.

    Article  CAS  PubMed  Google Scholar 

  27. Ng P, Parks RJ, Cummings DT, et al. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther. 1999;10:2667–2672.

    Article  CAS  PubMed  Google Scholar 

  28. Bangari DS, Mittal SK . Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res. 2004, in press.

  29. Zantek ND, Azimi M, Fedor-Chaiken M, et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 1999;10:629–638.

    CAS  PubMed  Google Scholar 

  30. Price JE . Clonogenicity and experimental metastatic potential of spontaneous mouse mammary neoplasms. J Natl Cancer Inst. 1986;77:529–535.

    CAS  PubMed  Google Scholar 

  31. Carles-Kinch K, Kilpatrick KE, Stewart JC, et al. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 2002;62:2840–2847.

    CAS  PubMed  Google Scholar 

  32. Addison CL, Braciak T, Ralston R, et al. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model. Proc Natl Acad Sci USA. 1995;92:8522–8526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer K, Hitt M, Emtage PC, et al. Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Ther. 2001;8:282–290.

    Article  CAS  PubMed  Google Scholar 

  34. Ding Y, Wen Y, Spohn B, et al. Proapoptotic and antitumor activities of adenovirus-mediated p202 gene transfer. Clin Cancer Res. 2002;8:3290–3297.

    CAS  PubMed  Google Scholar 

  35. Vlachaki MT, Chhikara M, Aguilar L, et al. Enhanced therapeutic effect of multiple injections of HSV-TK + GCV gene therapy in combination with ionizing radiation in a mouse mammary tumor model. Int J Radiat Oncol Biol Phys. 2001;51:1008–1017.

    Article  CAS  PubMed  Google Scholar 

  36. Kikawa KD, Vidale DR, Van Etten RL, et al. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem. 2002;277:39274–39279.

    Article  CAS  PubMed  Google Scholar 

  37. Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–74.

    Article  CAS  PubMed  Google Scholar 

  38. Chen L, Anton M, Graham FL . Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre. Somat Cell Mol Genet. 1996;22:477–488.

    Article  CAS  PubMed  Google Scholar 

  39. Graham FL,, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ, ed. Methods of Molecular Biology: Gene Transfer and Expression Protocols. Totowa: Humana Press; 1991: 109–128.

    Chapter  Google Scholar 

  40. Kinch MS, Kilpatrick KE, Zhong C . Identification of tyrosine phosphorylated adhesion proteins in human cancer cells. Hybridoma. 1998;17:227–235.

    Article  CAS  PubMed  Google Scholar 

  41. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467.

    Article  CAS  PubMed  Google Scholar 

  42. Sambrook J, Russell DW . Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Harbor Press; 2001.

    Google Scholar 

Download references

Acknowledgements

We thank Jane Stewart, Shaji Abraham, Rebecca Pratt, and Keith Kikawa for their technical advice, Elizabeth Bruckheimer for critical reading of the manuscript and Jane Kovach for excellent secretarial assistance. This work was partially supported by grants from Purdue Research Foundation, National Cancer Institute (U01 CA91318) and the US Army Medical Research Acquisition Activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noblitt, L., Bangari, D., Shukla, S. et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 11, 757–766 (2004). https://doi.org/10.1038/sj.cgt.7700761

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700761

Keywords

This article is cited by

Search

Quick links