Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenic expression of CD40L and interleukin-2 induces an autologous antitumor immune response in patients with non-Hodgkin's lymphoma

Abstract

The malignant B cells of non-Hodgkin's lymphoma (B-NHL cells) express peptides derived from tumor-specific antigens such as immunoglobulin idiotypes, and also express major histocompatibility complex antigens. However, they do not express co-stimulatory molecules, which likely contributes to their protection from host antitumor immunity. To stimulate NHL-specific immune responses, we attempted to transfer the human CD40 ligand (hCD40L) gene to B-NHL cells and enhance their co-stimulatory potential. We found that an adenoviral vector encoding human CD40L (AdhCD40L) was ineffective at transducing B-NHL cells because these cells lack the coxsackievirus B-adenovirus receptor and αv integrins. However, preculture of the B-NHL cells with the human embryonic lung fibroblast line, MRC-5, significantly up-regulated expression of integrin αvβ3 and markedly increased their susceptibility to adenoviral vector transduction. After prestimulation, transduction with AdhCD40L increased CD40L expression on B-NHL cells from 1.3±0.2% to 40.8±11.9%. Transduction of control adenoviral vector had no effect. Expression of transgenic human CD40L on these CD40-positive cells was in turn associated with up-regulation of other co-stimulatory molecules including B7-1/-2. Transduced B-NHL cells were now able to stimulate DNA synthesis of autologous T cells. However, the stimulated T cells were unable to recognize unmodified lymphoma cells, a requirement for an effective tumor vaccine. Based on previous results in an animal model, we determined the effects of combined use of B-NHL cells transduced with AdhCD40L and AdhIL2 vectors. The combination enhanced initial T-cell activation and generated autologous T cells capable of specifically recognizing and killing parental (unmodified) B-NHL cellsvia major histocompatibility complex–restricted cytotoxic T lymphocytes. These findings suggest that the combination of CD40L and IL2 gene-modified B-NHL cells will induce a cytotoxic immune responsein vivo directed against unmodified tumor cells. Cancer Gene Therapy (2001) 8, 378–387

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris NL, Jaffe ES, Stein H, et al . A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Blood 1994 84: 1361

    CAS  PubMed  Google Scholar 

  2. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma . The Non-Hodgkin's Lymphoma Classification Project Blood 1997 89: 3909

    Google Scholar 

  3. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project N Engl J Med 1993 329: 987

  4. Besa PC, McLaughlin PW, Cox JD, Fuller LM . Long-term assessment of patterns of treatment failure and survival in patients with stage I or II follicular lymphoma Cancer 1995 75: 2361

    Article  CAS  PubMed  Google Scholar 

  5. Mac Manus MP, Hoppe RT . Is radiotherapy curative for stage I and II low-grade follicular lymphoma? Results of a long-term follow-up study of patients treated at Stanford University J Clin Oncol 1996 14: 1282

    Article  CAS  PubMed  Google Scholar 

  6. Fisher RI, Gaynor ER, Dahlberg S, et al . Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma N Engl J Med 1993 328: 1002

    Article  CAS  PubMed  Google Scholar 

  7. Gianni AM, Bregni M, Siena S, et al . High-dose chemotherapy and autologous bone marrow transplantation compared with MACOP-B in aggressive B-cell lymphoma N Engl J Med 1997 336: 1290

    Article  CAS  PubMed  Google Scholar 

  8. Miller JS, Arthur DC, Litz CE, Neglia JP, Miller WJ, Weisdorf DJ . Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy Blood 1994 83: 3780

    CAS  PubMed  Google Scholar 

  9. Stone RM, Neuberg D, Soiffer R, et al . Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma J Clin Oncol 1994 12: 2535

    Article  CAS  PubMed  Google Scholar 

  10. Maloney DG, Grillo-López AJ, White CA, et al . IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma Blood 1997 90: 2188

    CAS  PubMed  Google Scholar 

  11. Coiffier B, Haioun C, Ketterer N, et al . Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study Blood 1998 92: 1927

    CAS  PubMed  Google Scholar 

  12. Press OW, Eary JF, Appelbaum FR, et al . Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B-cell lymphomas Lancet 1995 346: 336

    Article  CAS  PubMed  Google Scholar 

  13. Higuchi C, Thompson J, Petersen F, Buckner C, Fefer A . Toxicity and immunomodulatory effects of interleukin-2 after autologous bone marrow transplantation Blood 1991 77: 2561

    CAS  PubMed  Google Scholar 

  14. Raspadori D, Lauria F, Ventura MA, et al . Low doses of rIL2 after autologous bone marrow transplantation induce a prolonged immunostimulation of NK compartment in high-grade non-Hodgkin's lymphomas Ann Hematol 1995 71: 175

    Article  CAS  PubMed  Google Scholar 

  15. Slavin S, Nagler A . Immunotherapy in conjunction with autologous and allogeneic blood or marrow transplantation in lymphoma Ann Oncol 1998 9: S31

    Article  PubMed  Google Scholar 

  16. Solal-Celigny P, Lepage E, Brousse N, et al . Recombinant interferon alpha-2b combined with a regimen containing doxorubicin in patients with advanced follicular lymphoma. Groupe d'Etude des Lymphomes de l'Adulte N Engl J Med 1993 329: 1608

    Article  CAS  PubMed  Google Scholar 

  17. Kaminski MS, Kitamura K, Maloney DG, Levy R . Idiotype vaccination against murine B-cell lymphoma. Inhibition of tumor immunity by free idiotype protein J Immunol 1987 138: 1289

    CAS  PubMed  Google Scholar 

  18. Weiss S, Bogen B . B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells Proc Natl Acad Sci USA 1989 86: 282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R . Induction of immune responses in patients with B-cell lymphoma against the surface immunoglobulin idiotype expressed by their tumors N Engl J Med 1992 327: 1209

    Article  CAS  PubMed  Google Scholar 

  20. Bendandi M, Gocke CD, Kobrin CB, et al . Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma Nat Med 1999 5: 1171

    Article  CAS  PubMed  Google Scholar 

  21. Foy TM, Shepherd DM, Durie FH, Aruffo A, Ledbetter JA, Noelle RJ . In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity: II. Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39 J Exp Med 1993 178: 1567

    Article  CAS  PubMed  Google Scholar 

  22. Schultze JL, Cardoso AA, Freeman GJ, et al . Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity Proc Natl Acad Sci USA 1995 92: 8200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schultze J, Seamon M, Michalak S, Gribben J, Nadler L . Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expandedin vitro Blood 1997 89: 3806

    CAS  PubMed  Google Scholar 

  24. Dilloo D, Brown M, Roskrow M, et al . CD40 ligand induces an antileukemia immune responsein vivo Blood 1997 90: 1927

    CAS  PubMed  Google Scholar 

  25. Takahashi S, Rousseau RF, Yotnda P, et al . Autologous antileukemic immune responses induced by chronic lymphocytic leukemia B cells expressing the CD40 ligand and interleukin-2 transgenes Hum Gene Ther 2001. In press

  26. Hsu KH, Lonberg-Holm K, Alstein B, Crowell RL . A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses J Virol 1988 62: 1647

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergelson JM, Cunningham JA, Droguett G, et al . Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320

    Article  CAS  PubMed  Google Scholar 

  28. Faassen AE, Dalke DP, Berton MT, Warren WD, Pierce SK . CD40–CD40 ligand interactions stimulate B-cell antigen processing Eur J Immunol 1995 25: 3249

    Article  CAS  PubMed  Google Scholar 

  29. Banchereau J, Steinman R . Dendritic cells and the control of immunity Nature 1998 392: 245

    Article  CAS  PubMed  Google Scholar 

  30. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474

    Article  CAS  PubMed  Google Scholar 

  31. Hasbold J, Johnson-Leger C, Atkins CJ, Clark EA, Klaus GG . Properties of mouse CD40: cellular distribution of CD40 and B-cell activation by monoclonal antimouse CD40 antibodies Eur J Immunol 1994 24: 1835

    Article  CAS  PubMed  Google Scholar 

  32. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions Nature 1998 393: 480

    Article  CAS  PubMed  Google Scholar 

  33. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . Help for cytotoxic T-cell responses is mediated by CD40 signalling Nature 1998 393: 478

    Article  CAS  PubMed  Google Scholar 

  34. Funakoshi S, Longo DL, Beckwith M, et al . Inhibition of human B-cell lymphoma growth by CD40 stimulation Blood 1994 83: 2787

    CAS  PubMed  Google Scholar 

  35. Baker MP, Eliopoulos AG, Young LS, Armitage RJ, Gregory CD, Gordon J . Prolonged phenotypic, functional, and molecular change in group I Burkitt lymphoma cells on short-term exposure to CD40 ligand Blood 1998 92: 2830

    CAS  PubMed  Google Scholar 

  36. Henriquez NV, Floettmann E, Salmon M, Rowe M, Rickinson AB . Differential responses to CD40 ligation among Burkitt lymphoma lines that are uniformly responsive to Epstein–Barr virus latent membrane protein 1 J Immunol 1999 162: 3298

    CAS  PubMed  Google Scholar 

  37. Voorzanger-Rousselot N, Favrot M, Blay JY . Resistance to cytotoxic chemotherapy induced by CD40 ligand in lymphoma cells Blood 1998 92: 3381

    CAS  PubMed  Google Scholar 

  38. Chu P, Wierda WG, Kipps TJ . CD40 activation does not protect chronic lymphocytic leukemia B cells from apoptosis induced by cytotoxic T lymphocytes Blood 2000 95: 3853

    CAS  PubMed  Google Scholar 

  39. Andersen N, Larsen J, Christiansen J, et al . Soluble CD40 ligand induces selective proliferation of lymphoma cells in primary mantle cell lymphoma cell culture Blood 2000 96: 2219

    CAS  PubMed  Google Scholar 

  40. Hitt MM, Addison CL, Graham FL . Human adenovirus vectors for gene transfer into mammalian cells Adv Pharmacol 1997 40: 137

    Article  CAS  PubMed  Google Scholar 

  41. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery Curr Opin Biotechnol 1999 10: 440

    Article  CAS  PubMed  Google Scholar 

  42. Huang S, Endo RI, Nemerow GR . Up-regulation of integrins alphav beta 3 and alphav beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery J Virol 1995 69: 2257

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Vien Holcombe for excellent technical assistance and Xiuwei Xu for vector preparation. We are grateful for the persistent and reliable support of Brian Newsom, Mike Cubbage, Tatiana Gotsolva, Nirmali Ponweera, and April Durett of the Flow Cytometry Core Facility for FACS analyses. We also thank Gloria Levin for help in preparing this manuscript. This study was supported by National Institutes of Health Grant nos. RO1 CA75014 and RO1 CA78792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm K Brenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Yotnda, P., Rousseau, R. et al. Transgenic expression of CD40L and interleukin-2 induces an autologous antitumor immune response in patients with non-Hodgkin's lymphoma. Cancer Gene Ther 8, 378–387 (2001). https://doi.org/10.1038/sj.cgt.7700315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700315

Keywords

This article is cited by

Search

Quick links