Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric-waveform alternating current-promoted silver catalysis for C–H phosphorylation

Abstract

Preventing metal deposition by cathodic reduction is a formidable challenge during transition-metal-catalysed electrosynthesis under direct current (d.c.) electrolysis conditions, especially for noble metal catalysis. To overcome the limitation of reductive metal deposition, we now report an asymmetric-waveform alternating current (a.c.) electrolysis protocol for silver-catalysed C–H phosphorylation, where our a.c.-based approach achieves smooth regeneration of the silver catalyst. A wide variety of alkynes, alkenes and (hetero)arenes are reactive under our a.c. electrolysis conditions, delivering the desired phosphite ester derivatives (88 examples) in good yields, whereas these products are often obtained in poor yields under d.c. electrolysis conditions. Notably, this protocol can be expanded to Pd- and Cu-catalysed C–H functionalization. This electrochemical metal-catalysis strategy is distinct from traditional d.c. electrosynthesis and has great potential to be used in the fine organic chemical industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrosynthetic strategies for transition-metal-catalysed C–H/X–H cross-coupling.
Fig. 2: The mechanistic studies and proposed reaction mechanism.
Fig. 3: Substrate scopes for a.c. electrosynthesis of alkynes and alkenes.
Fig. 4: Substrate scopes for a.c. electrosynthesis of (hetero)arenes and synthetic applications.

Similar content being viewed by others

Data availability

All data that support the findings of this study, which include device construction, experimental procedures and compound characterization, are available within the manuscript and its Supplementary Information. Source data are provided with this paper.

References

  1. Kolbe, H. Untersuchungen über die elektrolyse organischer verbindungen. Justus Liebigs Ann. Chem. 69, 257–294 (1849).

    Article  Google Scholar 

  2. Jutand, A. Contribution of electrochemistry to organometallic catalysis. Chem. Rev. 108, 2300–2347 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  6. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kirubakaran, A., Jain, S. & Nema, R. K. A review on fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 13, 2430–2440 (2009).

    Article  CAS  Google Scholar 

  8. Siwakoti, Y. P. et al. Impedance-source networks for electric power conversion part II: review of control and modulation techniques. IEEE Trans. Power Electr. 30, 1887–1906 (2015).

    Article  Google Scholar 

  9. Rodrigo, S., Gunasekera, D., Mahajan, J. P. & Luo, L. Alternating current electrolysis for organic synthesis. Curr. Opin. Electrochem. 28, 100712 (2021).

    Article  CAS  Google Scholar 

  10. Vehrenberg, J. et al. Steady-state electrochemical synthesis of HKUST-1 with polarity reversal. Micropor. Mesopor. Mater. 303, 110218 (2020).

    Article  CAS  Google Scholar 

  11. Schotten, C. et al. Alternating polarity for enhanced electrochemical synthesis. React. Chem. Eng. 6, 147–151 (2021).

    Article  CAS  Google Scholar 

  12. Lee, C. W., Cho, N. H., Nam, K. T., Hwang, Y. J. & Min, B. K. Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nat. Commun. 10, 3919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blanco Daniela, E., Lee, B. & Modestino Miguel, A. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl Acad. Sci. 116, 17683–17689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, B., Naito, H., Nagao, M. & Hibino, T. Alternating-current electrolysis for the production of phenol from benzene. Angew. Chem. Int. Ed. 51, 6961–6965 (2012).

    Article  CAS  Google Scholar 

  15. Hayashi, K., Griffin, J., Harper, K. C., Kawamata, Y. & Baran, P. S. Chemoselective (hetero)arene electroreduction enabled by rapid alternating polarity. J. Am. Chem. Soc. 144, 5762–5768 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Kawamata, Y. et al. Chemoselective electrosynthesis using rapid alternating polarity. J. Am. Chem. Soc. 143, 16580–16588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodrigo, S. et al. Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero)arenes. Org. Lett. 22, 6719–6723 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Fährmann, J. & Hilt, G. Alternating current electrolysis as efficient tool for the direct electrochemical oxidation of hydroxamic acids for acyl nitroso diels–alder reactions. Angew. Chem. Int. Ed. 60, 20313–20317 (2021).

    Article  Google Scholar 

  19. Sattler, L. E., Otten, C. J. & Hilt, G. Alternating current electrolysis for the electrocatalytic synthesis of mixed disulfide via sulfur–sulfur bond metathesis towards dynamic disulfide libraries. Chem. Eur. J. 26, 3129–3136 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bortnikov, E. O. & Semenov, S. N. Coupling of alternating current to transition-metal catalysis: examples of nickel-catalyzed cross-coupling. J. Org. Chem. 86, 782–793 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, Y. et al. Radical–radical cross-coupling assisted N–S bond formation using alternating current protocol. CCS Chem. 3, 3027–3038 (2021).

    Google Scholar 

  22. Wang, D. et al. Current electrolysis enabled formal C−O/O−H cross-metathesis of 4-alkoxy358 anilines with alcohols. Angew. Chem. Int. Ed. 61, e202201543 (2022).

    CAS  Google Scholar 

  23. Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torabi, S., Jamshidi, M., Amooshahi, P., Mehrdadian, M. & Khazalpour, S. Transition metal-catalyzed electrochemical processes for C–C bond formation. New J. Chem. 44, 15321–15336 (2020).

    Article  CAS  Google Scholar 

  25. Saint-Denis Tyler, G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho, S. H., Kim, J. Y., Kwak, J. & Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 40, 5068–5083 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, J., Lv, S. & Tian, S. Electrochemical transition-metal-catalyzed C–H bond functionalization: electricity as clean surrogates of chemical oxidants. ChemSusChem 12, 115–132 (2019).

    Article  PubMed  Google Scholar 

  30. Ma, C., Fang, P. & Mei, T.-S. Recent advances in C–H functionalization using electrochemical transition metal catalysis. ACS Catal. 8, 7179–7189 (2018).

    Article  CAS  Google Scholar 

  31. Wirtanen, T., Prenzel, T., Tessonnier, J.-P. & Waldvogel, S. R. Cathodic corrosion of metal electrodes—how to prevent it in electroorganic synthesis. Chem. Rev. 121, 10241–10270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amatore, C., Cammoun, C. & Jutand, A. Electrochemical recycling of benzoquinone in the Pd/benzoquinone-catalyzed heck-type reactions from arenes. Adv. Synth. Catal. 349, 292–296 (2007).

    Article  CAS  Google Scholar 

  33. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res. 53, 84–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3d metallaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev. 49, 4254–4272 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Zeng, L. et al. Electrochemical oxidative aminocarbonylation of terminal alkynes. Nat. Catal. 3, 438–445 (2020).

    Article  CAS  Google Scholar 

  36. Ma, C. et al. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem. Sci. 12, 12866–12873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kakiuchi, F. et al. Palladium-catalyzed aromatic C–H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc. 131, 11310–11311 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, J.-S., Yu, Y., Shi, Z. & Ye, K.-Y. An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Org. Chem. Front. 8, 1315–1328 (2021).

    Article  CAS  Google Scholar 

  39. Chow, H., Ingelsson, M., Roberts, E. P. L. & Pham, A. L.-T. How does periodic polarity reversal affect the faradaic efficiency and electrode fouling during iron electrocoagulation? Water Res. 203, 117497 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Torii, S., Inokuchi, T. & Sugiura, T. Indirect electrooxidation of alcohols and aldehydes by using a double mediatory system consisting of ruthenium tetraoxide/ruthenium dioxide and chlorine cation/chlorine anion redoxes in an aqueous-organic two-phase system. J. Org. Chem. 51, 155–161 (1986).

    Article  CAS  Google Scholar 

  41. Liu, J., Xiao, H.-Z., Fu, Q. & Yu, D.-G. Advances in radical phosphorylation from 2016 to 2021. Chem. Synth. 1, 9 (2021).

    Google Scholar 

  42. Sbei, N., Martins, G. M., Shirinfar, B. & Ahmed, N. Electrochemical phosphorylation of organic molecules. Chem. Rec. 20, 1530–1552 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Z.-J. et al. Scalable rhodium(III)-catalyzed aryl C–H phosphorylation enabled by anodic oxidation induced reductive elimination. Angew. Chem. Int. Ed. 58, 16770–16774 (2019).

    Article  CAS  Google Scholar 

  44. Wang, S., Xue, Q., Guan, Z., Ye, Y. & Lei, A. Mn-catalyzed electrooxidative undirected C–H/P–H cross-coupling between aromatics and diphenyl phosphine oxides. ACS Catal. 11, 4295–4300 (2021).

    Article  CAS  Google Scholar 

  45. Zhang, J.-Q., Chen, T., Zhang, J.-S. & Han, L.-B. Silver-free direct synthesis of alkynylphosphine oxides via spC–H/P(O)–H dehydrogenative coupling catalyzed by palladium. Org. Lett. 19, 4692–4695 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T. et al. Silver-mediated selective oxidative cross-coupling between C–H/P–H: a strategy to construct alkynyl(diaryl)phosphine oxide. Org. Lett. 17, 118–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Gui, Q., Hu, L., Chen, X., Liu, J. & Tan, Z. Stereoselective synthesis of vinylphosphonates and phosphine oxides via silver-catalyzed phosphorylation of styrenes. Chem. Commun. 51, 13922–13924 (2015).

    Article  CAS  Google Scholar 

  48. Gao, Y. et al. Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphonates leading to alkynylphosphonates. J. Am. Chem. Soc. 131, 7956–7957 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Kagayama, T., Nakano, A., Sakaguchi, S. & Ishii, Y. Phosphonation of arenes with dialkyl phosphites catalyzed by Mn(II)/Co(II)/O2 redox Couple. Org. Lett. 8, 407–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, J., Xiao, H.-Z., Fu, Q. & Yu, D.-G. Advances in radical phosphorylation from 2016 to 2021. Chem. Synth. 1, 9 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2021YFA1500104, to A.L.), National Natural Science Foundation of China (grant no. 22031008, to A.L.), the Science Foundation of Wuhan (grant no. 2020010601012192, to A.L.) and the China Postdoctoral Science Foundation (grant nos. 2021M702520 and BX2021225, to L.Z.). We thank S. Tang from Shanghai Jiao Tong University and A. D. Chowdhury from Wuhan University for advising on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and L.Z. contributed to the conception and design of the experiments. Y.J., W.Y., Y.W., S.W., P.W., D.W., Q.Y., J.W. and H.Z. performed the experiments. L.Z. and A.L. cowrote the manuscript and all authors contributed to data analysis and scientific discussion. L.Z., Y.J. and W.Y. contributed equally to this work.

Corresponding author

Correspondence to Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Long Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–13, Figs. 1–41 and Tables 1–8.

Source data

Source data Fig. 2

Unprocessed atomic absorption spectrum data (Fig. 2c,d,e,f,i) and current data (Fig. 2h).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Jiao, Y., Yan, W. et al. Asymmetric-waveform alternating current-promoted silver catalysis for C–H phosphorylation. Nat. Synth 2, 172–181 (2023). https://doi.org/10.1038/s44160-022-00197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00197-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing