Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ice-dominated Arctic deltas

Abstract

Arctic deltas form the critical interface between the Arctic landscape and the ocean. They filter freshwater, sediment, carbon and biochemical fluxes from approximately 14 million km2 of northern permafrost terrain. This Review highlights the unique controlling factors, seasonality and morphodynamic processes affecting Arctic deltas. Arctic deltas are ‘ice-dominated systems’ that are affected by land ice, permafrost and sea ice. They are strongly seasonal and are frozen for 7–9 months of the year. Permafrost limits channel migration. Arctic deltas experience ice jam floods, inducing biochemical exchange with thermokarst lakes. Transport under sea ice creates shallow prodelta ramps. Open-ocean conditions that promote marine reworking of river deposits are short-lived in the Arctic. A data compilation of Arctic deltas highlights that sediment and carbon fluxes are substantially lower than for lower-latitude deltas, with the exception of Greenlandic deltas. Arctic delta morphodynamics are also markedly subdued, with land–water conversion about eightfold less than in low-latitude deltas, probably owing to the unique ice processes occurring in Arctic deltas, which result in preferential floodplain and submarine sedimentation. Future trajectories of controlling factors indicate that Arctic deltas will transition away from being dominated by ice. The open-water season is expanding most rapidly, with wave energy predicted to increase threefold by 2100. Arctic deltas will thaw and experience increased wave influence, with poorly understood consequences for delta morphodynamics and carbon cycling. Process studies under transitional conditions are needed to develop predictive models further.

Key points

  • Arctic deltas are an important link in Arctic land–ocean exchange, delivering about 13% of the global freshwater flux but transferring a disproportionately low portion of the global sediment flux (around 2%) and particulate organic carbon flux (3–4%).

  • River-ice jams during break-up cause substantial floods in Arctic delta plains, leading to pronounced sediment retention and biogeochemical flux exchange with thermokarst lakes.

  • Land-fast sea ice plays an important part in river flood sediment distribution and acts to construct a characteristic submarine ramp, possibly enhancing carbon sequestration.

  • Arctic deltas are currently ice-dominated and experience subdued morphodynamic activity compared with lower-latitude deltas, probably owing to slower channel migration and flow constriction from land-fast sea ice.

  • Greenlandic deltas differ from other Arctic deltas in that they are growing rapidly owing to ice-sheet melt and their location in fjords protects them from wave action.

  • Climate change will force a morphological adjustment of Arctic deltas that will include increased channel mobility, subsidence and increased coastal erosion caused by enhanced wave action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution and classification of Arctic deltas.
Fig. 2: Ice processes that act on Arctic deltas.
Fig. 3: RSL changes in Arctic deltas during the Holocene.
Fig. 4: Sediment transport processes in Arctic deltas.
Fig. 5: Ice processes in Arctic deltas.
Fig. 6: Comparison of the characteristics and dynamics of Arctic and global deltas.
Fig. 7: Current concepts of Arctic delta processes and projected effects of climate warming.

Similar content being viewed by others

References

  1. Forbes, D. L. in Coasts and Estuaries Ch. 8 (eds Wolanski, E. et al.) 123–147 (Elsevier, 2019). This is a comprehensive review of process studies in the Mackenzie Delta and Canadian fjord deltas.

  2. Stanley, D. J. & Warne, A. Holocene sea level change and early human utilization of deltas. GSA Today 7, 1–7 (1995).

    Google Scholar 

  3. Mason, O. & Friesen, M. Out of the Cold: Archeology on the Arctic Rim of North America (The Society for American Archeology, 2018).

  4. Bobrovitskaya, N. N., Zubkova, C. & Meade, R. H. Discharges and yields of suspended sediment in the Ob’ and Yenisey Rivers of Siberia. IAHS-AISH Publ. 236, 115–123 (1996).

    Google Scholar 

  5. Vörösmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Article  Google Scholar 

  6. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  7. Walker, H. J. Arctic deltas. J. Coast. Res. 14, 718–738 (1998). This classic paper reviews Arctic deltas with lessons learned from 30 years of field studies in the Colville River delta.

    Google Scholar 

  8. Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2013).

    Article  Google Scholar 

  9. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  Google Scholar 

  10. Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 13–35 (2015).

    Article  Google Scholar 

  11. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  12. Gordeev, V. V. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80, 94–104 (2006).

    Article  Google Scholar 

  13. Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).

    Article  Google Scholar 

  14. Whitefield, J., Winsor, P., McClelland, J. & Menemenlis, D. A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean. Model. 88, 1–15 (2015).

    Article  Google Scholar 

  15. McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 30, 1145–1165 (2016). This paper presents POC and nitrogen fluxes for the Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma deltas from 9 years of field campaigns covering different seasons.

    Article  Google Scholar 

  16. Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, 1–9 (2007).

    Article  Google Scholar 

  17. Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    Article  Google Scholar 

  18. Bianchi, T. S. & Allison, M. A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl Acad. Sci. USA 106, 8085–8092 (2009).

    Article  Google Scholar 

  19. Shields, M. R. et al. Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846–851 (2017).

    Article  Google Scholar 

  20. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article  Google Scholar 

  21. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  Google Scholar 

  22. Parmentier, F. J. W. et al. A synthesis of the Arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 53–69 (2017).

    Article  Google Scholar 

  23. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  24. Vonk, J. E. et al. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochim. Cosmochim. Acta 171, 100–120 (2015).

    Article  Google Scholar 

  25. Fuchs, M. et al. Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos 4, 1–18 (2018).

    Google Scholar 

  26. Schirrmeister, L. et al. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands — a review. Quat. Int. 241, 3–25 (2011).

    Article  Google Scholar 

  27. Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).

    Article  Google Scholar 

  28. Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C. & Dise, N. B. Methane emissions from tundra environments Yukon–Kuskokwim Delta, Alaska. J. Geophys. Res. 97, 16,645–16,660 (1992).

    Article  Google Scholar 

  29. Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 3–8 (2017).

    Article  Google Scholar 

  30. Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Glob. Biogeochem. Cycles 16, 1–14 (2002). This is a comprehensive synthesis of observational data on fluvial sediment fluxes for the Yenisei, Lena, Ob, Mackenzie, Yukon, Pechora, Kolyma and Severnaya Dvina rivers, illustrating their relatively low sediment loads compared to rivers in lower latitudes.

    Article  Google Scholar 

  31. Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, 1–17 (2021).

    Article  Google Scholar 

  32. Leffingwell, E. K. The Canning River region, northern Alaska. USGS Prof. Pap. 109, 1–251 (1919).

    Google Scholar 

  33. Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. USGS Prof. Pap. 1068, 1–19 (1978).

    Google Scholar 

  34. Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 1349–1359 (2003). This paper presents theoretical model development and field data of bank erosion in permafrost-affected rivers.

    Article  Google Scholar 

  35. Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in central Siberia. Geophys. Res. Lett. 34, 1–4 (2007).

    Article  Google Scholar 

  36. Walker, J., Arnborg, L. & Peippo, J. Riverbank erosion in the Colville Delta. Alaska. Geogr. Ann. 69, 61–70 (1987). This paper presents observational data on slow rates of river bank erosion in different substrates and main versus distributary delta channels.

    Article  Google Scholar 

  37. Lauzon, R., Piliouras, A. & Rowland, J. C. Ice and permafrost effects on delta morphology and channel dynamics. Geophys. Res. Lett. 46, 6574–6582 (2019). This numerical modelling study investigates the effects of bank erodability on Arctic delta network topology.

    Article  Google Scholar 

  38. Lim, Y. J., Levy, J. S., Goudge, T. A. & Kim, W. Ice cover as a control on the morphodynamics and stratigraphy of Arctic deltas. Geology 47, 399–402 (2019).

    Article  Google Scholar 

  39. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017); https://www.amap.no/documents/download/2987/inline.

  40. Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, 1336–1352 (2020).

    Google Scholar 

  41. Turetsky, M. R. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Article  Google Scholar 

  42. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, 1–20 (2016).

    Article  Google Scholar 

  43. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).

    Article  Google Scholar 

  44. Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014). The mapping of the onset of open water and its duration along the entire Arctic coast from remote-sensing data shows a 1.5–3-fold expansion of sea-ice-free conditions over the past three decades.

    Article  Google Scholar 

  45. Hill, P. R., Blasco, S., Harper, J. & Fissel, D. Sedimentation on the canadian beaufort shelf. Continental Shelf Res. 11, 821–842 (1991).

    Article  Google Scholar 

  46. Hill, P. R., Peter Lewis, C., Desmarais, S., Kauppaymuthoo, V. & Rais, H. The Mackenzie Delta: sedimentary processes and facies of a high-latitude, fine-grained delta. Sedimentology 48, 1047–1078 (2001).

    Article  Google Scholar 

  47. Naidu, A. S. & Mowatt, T. C. in Deltas: Models for Exploration (ed. Broussard, M. L.) 283–309 (Houston Geological Society, 1975).

  48. Dupre, W. R. & Thompson, R. The Yukon delta: a model for deltaic sedimentation in an ice-dominated environment. Proc. Annu. Offshore Technol. Conf. 5, 657–664 (1979). This classic description of delta processes in the Arctic setting was the first to propose using ice dominance as a classification criterion for high-latitude deltas.

    Google Scholar 

  49. Arnborg, L. & Walker, J. Suspended load in the Colville River, Alaska, 1962. Geogr. Ann. 49, 131–144 (1966).

    Article  Google Scholar 

  50. Walker, H. J. in Symposium on the Hydrology of Deltas 209–219 (IAHS, 1970).

  51. Walker, H. J. & Hudson, P. F. Hydrologic and geomorphic processes in the Colville River delta, Alaska. Geomorphology 56, 291–303 (2003).

    Article  Google Scholar 

  52. Dupre, W. Yukon Delta Coastal Processes Study (OSTI, 1980); https://www.osti.gov/biblio/5793121-yukon-delta-coastal-processes-study-final-report.

  53. Nelson, C. H., Dupre, W., Fleld, M. & Howard, J. D. Variations in sand body types on the Eastern Bering Sea epicontinental shelf. Geol. Mijnbouw 61, 37–48 (1982).

    Google Scholar 

  54. Are, F. & Reimnitz, E. An overview of the Lena River Delta setting: geology, tectonics, geomorphology, and hydrology. J. Coast. Res. 16, 1083–1093 (2000). This is a synthesis paper on the long-term evolution of the Lena Delta.

    Google Scholar 

  55. Reimnitz, E. Interactions of river discharge with sea ice in proximity of Arctic deltas: a review. Polarforschung 70, 123–134 (2000).

    Google Scholar 

  56. Reimnitz, E. & Bruder, K. River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, coast of Alaska. Geol. Soc. Am. Bull. 83, 861–866 (1972).

    Article  Google Scholar 

  57. Piliouras, A. & Rowland, J. C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. 125, 1–20 (2020).

    Article  Google Scholar 

  58. Kasper, J. L. & Weingartner, T. J. The spreading of a buoyant plume beneath a landfast ice cover. J. Phys. Oceanogr. 45, 478–494 (2015). This process modelling study uses the Regional Ocean Model System to highlight the effects of sub-ice discharge of river water onto sea ice.

    Article  Google Scholar 

  59. Emmerton, C. A., Lesack, L. F. W. & Marsh, P. Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res. 43, 1–14 (2007). This is a field study of carbon and nutrient exchanges between river floodwater and thermokarst lakes in the Mackenzie Delta, demonstrating sediment settling in the floodplain and organic matter enrichment sourced from lakes and the floodplain.

    Article  Google Scholar 

  60. Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    Article  Google Scholar 

  61. Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).

    Article  Google Scholar 

  62. Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Article  Google Scholar 

  63. Dickinson, W. in New Perspectives in Basin Analysis (eds Kleinspehn, K. & Paola, C.) 177–187 (Springer, 2011).

  64. Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Sørensen, K. Chapter 1 An overview of the petroleum geology of the Arctic. Geol. Soc. Lond. Mem. 35, 1–15 (2011).

    Article  Google Scholar 

  65. Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    Article  Google Scholar 

  66. Korotayev, V. N. Geomorphology of river deltas on the Arctic coast of Siberia. Polar Geogr. Geol. 10, 139–147 (1986).

    Article  Google Scholar 

  67. Schwamborn, G., Rachold, V. & Grigoriev, M. N. Late Quaternary sedimentation history of the Lena Delta. Quat. Int. 89, 119–134 (2002).

    Article  Google Scholar 

  68. Lane, L. S. Canada Basin, Arctic Ocean: evidence against a rotational origin. Tectonics 16, 363–387 (1997).

    Article  Google Scholar 

  69. Whitehouse, P. L., Allen, M. B. & Milne, G. A. Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. Geology 35, 747–750 (2007). This is a modelling study of glacio-isostatic rebound of Siberian deltas, demonstrating the effect of forebulge collapse on delta evolution.

    Article  Google Scholar 

  70. Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).

    Article  Google Scholar 

  71. Klemann, V., Heim, B., Bauch, H. A., Wetterich, S. & Opel, T. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the Last Glacial Maximum. Arktos 1, 1–8 (2015).

    Article  Google Scholar 

  72. Aarseth, I. Western Norwegian fjord sediments: age, volume, stratigraphy, and role as temporary depository during glacial cycles. Mar. Geol. 143, 39–53 (1997).

    Article  Google Scholar 

  73. Bolshiyanov, D., Makarov, A. & Savelieva, L. Lena River delta formation during the Holocene. Biogeosciences 12, 579–593 (2015).

    Article  Google Scholar 

  74. Peltier, W., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid. Earth 120, 450–487 (2014).

    Article  Google Scholar 

  75. Baranskaya, A. V. et al. A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. 199, 188–205 (2018).

    Article  Google Scholar 

  76. Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G. & Lykke-Andersen, H. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quat. Sci. Rev. 35, 29–50 (2012).

    Article  Google Scholar 

  77. Overeem, I. & Syvitski, J. P. M. Experimental exploration of the stratigraphy of fjords fed by glaciofluvial systems. Geol. Soc. Lond. Spec. Publ. 344, 125–142 (2010).

    Article  Google Scholar 

  78. Fraser, C., Hill, P. R. & Allard, M. Morphology and facies architecture of a falling sea level strandplain, Umiujaq, Hudson Bay, Canada. Sedimentology 52, 141–160 (2005).

    Article  Google Scholar 

  79. O’Regan, M. et al. Early Holocene sea level in the Canadian Beaufort Sea constrained by radiocarbon dates from a deep borehole in the Mackenzie Trough, Arctic Canada. Boreas 47, 1102–1117 (2018).

    Article  Google Scholar 

  80. Hanna, A. J. M., Allison, M. A., Bianchi, T. S., Marcantonio, F. & Goff, J. A. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska. Cont. Shelf Res. 74, 11–24 (2014).

    Article  Google Scholar 

  81. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  82. Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9, 265–287 (1978).

    Article  Google Scholar 

  83. National Oceanic and Atmospheric Administration. Sea level trends. NOAA https://tidesandcurrents.noaa.gov/sltrends/ (2021).

  84. Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea level change along the Atlantic and Gulf coasts of North America. Earth’s Future 4, 440–464 (2016).

    Article  Google Scholar 

  85. Larour, E., Ivins, E. R. & Adhikari, S. Should coastal planners have concern over where land ice is melting? Sci. Adv. 3, e1700537 (2017).

    Article  Google Scholar 

  86. Galloway, W. E. in Deltas, Models For Exploration (ed. Broussard, M. L.) 87–98 (Houston Geological Society, 1975).

  87. Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).

    Article  Google Scholar 

  88. Geleynse, N. et al. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 302, 217–226 (2011).

    Article  Google Scholar 

  89. Orton, G. & Reading, H. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40, 475–512 (1993).

    Article  Google Scholar 

  90. Edmonds, D. A. & Slingerland, R. L. Significant effect of sediment cohesion on delta morphology. Nat. Geosci. 3, 105–109 (2010).

    Article  Google Scholar 

  91. Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties on deltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961–982 (2014).

    Article  Google Scholar 

  92. Shaw, J. B., Mohrig, D. & Whitman, S. K. The morphology and evolution of channels on the Wax Lake delta, Louisiana, USA. J. Geophys. Res. Earth Surf. 118, 1562–1584 (2013).

    Article  Google Scholar 

  93. Wright, L. D. & Coleman, J. M. Mississippi River mouth processes: effluent dynamics and morphologic development. J. Geol. 82, 751–778 (1974).

    Article  Google Scholar 

  94. Overeem, I. et al. Small-scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga Delta, Caspian Sea. Sediment. Geol. 159, 133–157 (2003).

    Article  Google Scholar 

  95. Coleman, J. M., Roberts, H. H. & Stone, G. W. Mississippi River delta: an overview. J. Coast. Res. 14, 698–716 (1998).

    Google Scholar 

  96. Fagherazzi, S. Self-organization of tidal deltas. Proc. Natl Acad. Sci. USA 105, 18692–18695 (2008).

    Article  Google Scholar 

  97. Bhattacharya, J. P. in Facies Models Revisited (eds Posamentier, H. & Walker, R.) 237–292 (Society for Sedimentary Geology, 2006).

  98. Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y. & Kästner, K. Tidal controls on river delta morphology. Nat. Geosci. 10, 637–645 (2017).

    Article  Google Scholar 

  99. Sassi, M. G., Hoitink, A. J. F., De Brye, B. & Deleersnijder, E. Downstream hydraulic geometry of a tidally influenced river delta. J. Geophys. Res. Earth Surf. 117, 1–13 (2012).

    Article  Google Scholar 

  100. Passalacqua, P., Lanzoni, S., Paola, C. & Rinaldo, A. Geomorphic signatures of deltaic processes and vegetation: the Ganges-Brahmaputra-Jamuna case study. J. Geophys. Res. Earth Surf. 118, 1838–1849 (2013).

    Article  Google Scholar 

  101. Bhattacharya, J. P. & Giosan, L. Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology 50, 187–210 (2003).

    Article  Google Scholar 

  102. Rodriguez, A. B., Hamilton, M. D. & Anderson, J. B. Facies and evolution of the modern Brazos Delta, Texas: wave versus flood influence. J. Sediment. Res. 70, 283–295 (2000).

    Article  Google Scholar 

  103. Nienhuis, J. H., Ashton, A. D. & Giosan, L. What makes a delta wave-dominated? Geology 43, 511–514 (2015).

    Article  Google Scholar 

  104. Wright, L. D. & Coleman, J. M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. Am. Assoc. Pet. Geol. Bull. 57, 370–398 (1973).

    Google Scholar 

  105. Nienhuis, J. H., Ashton, A. D. & Giosan, L. Littoral steering of deltaic channels. Earth Planet. Sci. Lett. 453, 204–214 (2016).

    Article  Google Scholar 

  106. Wilson, C. A. & Goodbred, S. L. Jr Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Ann. Rev. Mar. Sci. 7, 67–88 (2015).

    Article  Google Scholar 

  107. Solomon, S. M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Marine Lett. 25, 127–137 (2005).

    Article  Google Scholar 

  108. Syvitski, J. P. M. & Kettner, A. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957–975 (2011).

    Article  Google Scholar 

  109. Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).

    Article  Google Scholar 

  110. Cancet, M., Andersen, O. B., Lyard, F., Cotton, D. & Benveniste, J. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean. Adv. Space Res. 62, 1324–1343 (2018).

    Article  Google Scholar 

  111. Kulikov, M. E., Medvedev, I. P. & Kondrin, A. T. Features of seasonal variability of tidal sea-level oscillations in the Russian Arctic seas. Russ. Meteorol. Hydrol. 45, 411–421 (2020).

    Article  Google Scholar 

  112. Osadchiev, A. et al. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 16, 781–798 (2020).

    Article  Google Scholar 

  113. Magritsky, D., Mikhailov, V., Korotaev, V. & Babich, D. Changes in hydrological regime and morphology of river deltas in the Russian Arctic. IAHS-AISH Proc. Rep. 358, 67–79 (2013). This is one of very few studies of sediment distribution and trapping within Arctic delta distributary networks.

    Google Scholar 

  114. The GEBCO_2020 grid — a continuous terrain model of the global oceans and land (NOC, 2020); https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/a29c5465-b138-234d-e053-6c86abc040b9/.

  115. Overeem, I. & Syvitski, J. P. M. Shifting discharge peaks in Arctic rivers, 1977–2007. Geogr. Ann. Ser. A 92, 285–296 (2010).

    Article  Google Scholar 

  116. Beltaos, S. Onset of river ice breakup. Cold Reg. Sci. Technol. 25, 183–196 (1997).

    Article  Google Scholar 

  117. Beltaos, S. Threshold between mechanical and thermal breakup of river ice cover. Cold Reg. Sci. Technol. 37, 1–13 (2003).

    Article  Google Scholar 

  118. Cooley, S. W. & Pavelsky, T. M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sens. Environ. 175, 310–322 (2016).

    Article  Google Scholar 

  119. Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Article  Google Scholar 

  120. Arp, C. D., Jones, B. J., Liljedahl, A. K., Hinkel, K. & Welker, J. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes. Water Resour. Res. 51, 9379–9401 (2015).

    Article  Google Scholar 

  121. Jeffries, M. O., Morris, K. & Liston, G. E. A method to determine lake depth and water availability on the North Slope of Alaska with spaceborne imaging radar and numerical ice growth modelling. Arctic 49, 367–374 (1996).

    Article  Google Scholar 

  122. Goulding, H., Prowse, T. & Beltaos, S. Spatial and temporal patterns of break-up and ice-jam flooding in the Mackenzie Delta, NWT. Hydrol. Process. 23, 2654–2670 (2009).

    Article  Google Scholar 

  123. Vulis, L. et al. Channel network control on seasonal lake area dynamics in Arctic deltas. Geophys. Res. Lett. 47, e2019GL086710 (2020).

    Article  Google Scholar 

  124. Dean, K. G., Stringer, W. J., Ahlnas, K., Searcy, C. & Weingartner, T. The influence of river discharge on the thawing of sea ice, Mackenzie River delta: albedo and temperature analyses. Polar Res. 13, 83–94 (1994).

    Article  Google Scholar 

  125. Alkire, M. B. & Trefry, J. H. Transport of spring floodwater from rivers under ice to the Alaskan Beaufort Sea. J. Geophys. Res. Ocean. 111, 1–12 (2006).

    Article  Google Scholar 

  126. Wessells, S., Reimnitz, E., Barnes, P. & Kempema, E. Drift ice as a geologic agent (USGS, 1993). An important USGS documentary film on field observations and laboratory experiments on ice–sediment transport and interactions.

  127. Bareiss, J., Eicken, H., Helbig, A. & Martin, T. Impact of river discharge and regional climatology on the decay of sea ice in the laptev sea during spring and early summer. Arct. Antarct. Alp. Res. 31, 214–229 (1999).

    Article  Google Scholar 

  128. Nghiem, S., Hall, D. K., Rigor, I., Li, P. & Neumann, G. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett. 41, 873–879 (2014).

    Article  Google Scholar 

  129. Barnhart, K. R. et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf. 119, 1155–1179 (2014).

    Article  Google Scholar 

  130. Ravens, T. M., Jones, B. M., Zhang, J., Arp, C. D. & Schmutz, J. A. Process-based coastal erosion modeling for Drew Point, North Slope, Alaska. J. Waterw. Port Coastal Ocean Eng. 138, 122–130 (2012).

    Article  Google Scholar 

  131. Stettner, S. et al. Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote Sens. 10, 51 (2018).

    Article  Google Scholar 

  132. Hošeková, L. et al. Attenuation of ocean surface waves in pancake and frazil sea ice along the coast of the Chukchi Sea. J. Geophys. Res. Ocean. 125, e2020JC016746 (2020).

    Article  Google Scholar 

  133. Chikita, K. A. et al. in Origin and Evolution of Natural Diversity International Symposium Proceedings (HUSCAP, 2009).

  134. Robert, A. & Tran, T. Mean and turbulent flow fields in a simulated ice-covered channel with a gravel bed: some laboratory observations. Earth Surf. Process. Landf. 37, 951–956 (2012).

    Article  Google Scholar 

  135. Lotsari, E. et al. Sub-arctic river bank dynamics and driving processes during the open-channel flow period. Earth Surf. Process. Landf. 45, 1198–1216 (2020).

    Article  Google Scholar 

  136. Sui, J., Wang, J., He, Y. & Krol, F. Velocity profiles and incipient motion of frazil particles under ice cover. Int. J. Sediment. Res. 25, 39–51 (2010).

    Article  Google Scholar 

  137. Lamb, E. & Toniolo, H. Initial quantification of suspended sediment loads for three Alaska North Slope rivers. Water 8, 1–11 (2016).

    Article  Google Scholar 

  138. Toniolo, H. et al. Hydraulic characteristics and suspended sediment loads during spring breakup in several streams located on the National Petroleum Reserve in Alaska, USA. Nat. Resour. 04, 220–228 (2013).

    Google Scholar 

  139. Plug, L. J. & West, J. J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res. Earth Surf. 114, 1–18 (2009).

    Article  Google Scholar 

  140. Grosse, G., Jones, B. & Arp, C. Thermokarst lakes, drainage, and drained basins. Treat. Geomorphol. 8, 325–353 (2013). This is a comprehensive review of thermokarst lake formation and evolution.

    Article  Google Scholar 

  141. Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, 1–15 (2008).

    Article  Google Scholar 

  142. Marsh, P. et al. in 17th International Northern Research Basins Symposium Workshop (Northern Research Basins Symposium, 2009).

  143. Lesack, L. F. W. & Marsh, P. Lengthening plus shortening of river-to-lake connection times in the Mackenzie River Delta respectively via two global change mechanisms along the arctic coast. Geophys. Res. Lett. 34, 1–6 (2007).

    Article  Google Scholar 

  144. Vulis, L., Tejedor, A., Zaliapin, I., Rowland, J. C. & Foufoula-Georgiou, E. Climate signatures on lake and wetland size distributions in Arctic deltas. Geophys. Res. Lett. 48, e2021GL094437 (2021).

    Article  Google Scholar 

  145. Normandin, C. et al. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data. Hydrol. Earth Syst. Sci. 22, 1543–1561 (2018).

    Article  Google Scholar 

  146. Forbes, D. L., Craymer, M. R. & Whalen, D. J. R. Subsidence and inundation of a large Arctic permafrost delta. In Canadian Quaternary Association Conference (2015).

  147. Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Nutrient and organic matter patterns across the Mackenzie River, estuary and shelf during the seasonal recession of sea-ice. J. Mar. Syst. 74, 741–755 (2008).

    Article  Google Scholar 

  148. Cunada, C. L., Lesack, L. F. W. & Tank, S. E. Methane emission dynamics among CO2-absorbing and thermokarst lakes of a great Arctic delta. Biogeochemistry 156, 375–399 (2021).

    Article  Google Scholar 

  149. Kempema, E. W. & Barnes, P. W. Anchor ice, seabed freezing, and sediment dynamics in shallow Arctic seas. J. Geophys. Res. 92, 671–678 (1987).

    Google Scholar 

  150. Kempema, E. W., Reimnitz, E., Clayton, J. R. & Payne, J. R. Interactions of frazil and anchor ice with sedimentary particles in a flume. Cold Reg. Sci. Technol. 21, 137–149 (1993).

    Article  Google Scholar 

  151. Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 84–87 (2015). Data analysis of the source-to-sink carbon pathway and storage in the prodelta of the Mackenzie Delta, pointing to the importance of the submarine domain as a hotspot of carbon sequestration.

    Article  Google Scholar 

  152. Rowland, J. & Stauffer, S. Classified channel masks of portions of 13 rivers across the Arctic and areas of floodplain erosion and accretion ranging from 1973 to 2016. ESS-DIVE https://doi.org/10.15485/1571525 (2019).

  153. Debol’skaya, E. I. A mathematical model of channel deformations in permafrost zone rivers. Water Resour. 41, 512–521 (2014).

    Article  Google Scholar 

  154. Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).

    Article  Google Scholar 

  155. Vesakoski, J. M. et al. Arctic Mackenzie Delta channel planform evolution during 1983–2013 utilising Landsat data and hydrological time series. Hydrol. Process. 31, 3979–3995 (2017).

    Article  Google Scholar 

  156. Payne, C., Panda, S. & Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. 10, 397 (2018).

    Article  Google Scholar 

  157. Lantuit, H. et al. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).

    Article  Google Scholar 

  158. Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 7, 6–7 (2017).

    Article  Google Scholar 

  159. Gibbs, A. E. & Richmond, B. M. National assessment of shoreline change — summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska. USGS Open File Rep. 2017–1107, 1–21 (2017).

    Google Scholar 

  160. Wobus, C. et al. Thermal erosion of a permafrost coastline: improving process-based models using time-lapse photography. Arct. Antarct. Alp. Res. 43, 474–484 (2011).

    Article  Google Scholar 

  161. Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  162. Ping, C. L. et al. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline. J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

    Article  Google Scholar 

  163. Fuchs, M. et al. Rapid fluvio-thermal erosion of a yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. 8, 1–18 (2020).

    Article  Google Scholar 

  164. Jenner, K. A. & Hill, P. R. Recent, Arctic deltaic sedimentation: Olivier Islands, Mackenzie Delta, North-west Territories, Canada. Sedimentology 45, 987–1004 (1998).

    Article  Google Scholar 

  165. Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput. Geosci. 53, 80–93 (2013).

    Article  Google Scholar 

  166. Chawla, A., Spindler, D. M. & Tolman, H. L. Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. 70, 189–206 (2013).

    Article  Google Scholar 

  167. Jerolmack, D. J. & Swenson, J. B. Scaling relationships and evolution of distributary networks on wave-influenced deltas. Geophys. Res. Lett. 34, 1–5 (2007).

    Article  Google Scholar 

  168. Patruno, S. & Helland-Hansen, W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth Sci. Rev. 185, 202–233 (2018).

    Article  Google Scholar 

  169. Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 6, 810–813 (2016).

    Article  Google Scholar 

  170. Fyfe, J. C. et al. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci. Rep. 3, 1–7 (2013).

    Article  Google Scholar 

  171. Moon, T. A. et al. The expanding footprint of rapid Arctic change. Earth’s Future 7, 212–218 (2019).

    Article  Google Scholar 

  172. Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, 2–5 (2006).

    Article  Google Scholar 

  173. Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. G 121, 621–649 (2016).

    Article  Google Scholar 

  174. Burn, C. R. & Kokelj, S. V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 20, 83–105 (2009).

    Article  Google Scholar 

  175. Arp, C. D., Jones, B. M., Schmutz, J. A., Urban, F. E. & Jorgenson, M. T. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biol. 33, 1629–1640 (2010).

    Article  Google Scholar 

  176. Herman-Mercer, N., Schuster, P. & Maracle, K. Indigenous observations of climate change in the Lower Yukon River Basin, Alaska. Hum. Organ. 70, 244–252 (2011).

    Article  Google Scholar 

  177. Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science. 298, 2171–2173 (2002).

    Article  Google Scholar 

  178. Dankers, R. & Middelkoop, H. River discharge and freshwater runoff to the Barents Sea under present and future climate conditions. Clim. Change 87, 131–153 (2008).

    Article  Google Scholar 

  179. Vernon, C. L. et al. Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599–614 (2013).

    Article  Google Scholar 

  180. Box, J. E. et al. Global sea-level contribution from Arctic land ice: 1971–2017. Environ. Res. Lett. 13, 125012 (2018).

    Article  Google Scholar 

  181. National Snow & Ice Data Center. Charctic interactive sea ice graph. NSIDC https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/ (2020).

  182. Stopa, J. E., Ardhuin, F. & Girard-Ardhuin, F. Wave climate in the Arctic 1992–2014: seasonality and trends. Cryosphere 10, 1605–1629 (2016).

    Article  Google Scholar 

  183. Waseda, T. et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep. 8, 4489 (2018).

  184. Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).

    Article  Google Scholar 

  185. Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323–330 (2002).

    Article  Google Scholar 

  186. Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

    Article  Google Scholar 

  187. Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Chang. 6, 280–285 (2015).

    Article  Google Scholar 

  188. Casas-Prat, M. & Wang, X. L. Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res. Oceans 125, e2019JC015745 (2020). This paper presents projections of future Arctic Ocean wave conditions using the well established WaveWatch III model, which shows a threefold increase in wave energy over the twenty-first century.

    Article  Google Scholar 

  189. Antonova, S. et al. Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X Interferometry. Remote Sens. 10, 494 (2018).

    Article  Google Scholar 

  190. O’Neill, B., Smith, S. L. & Duchesne, C. in 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (American Society of Civil Engineers, 2019).

  191. Jorgenson, T. M., Frost, G. V. & Dissing, D. Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 1–27 (2018).

    Article  Google Scholar 

  192. Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453–457 (2012).

    Article  Google Scholar 

  193. Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).

    Article  Google Scholar 

  194. Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Article  Google Scholar 

  195. Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).

    Article  Google Scholar 

  196. Lasserre, F. Simulations of shipping along Arctic routes: comparison, analysis and economic perspectives. Polar Rec. 51, 239–259 (2015).

    Article  Google Scholar 

  197. Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 2010–2014. Sci. Rep. 6, 3–8 (2016).

    Article  Google Scholar 

  198. Gulas, S., Downton, M., D’Souza, K., Hayden, K. & Walker, T. R. Declining Arctic Ocean oil and gas developments: opportunities to improve governance and environmental pollution control. Mar. Policy 75, 53–61 (2017).

    Article  Google Scholar 

  199. Bendixen, M. et al. Promises and perils of sand exploitation in Greenland. Nat. Sustain. 2, 98–104 (2019).

    Article  Google Scholar 

  200. Wenzel, G. W. Canadian Inuit subsistence and ecological instability — if the climate changes, must the Inuit? Polar Res. 28, 89–99 (2009).

    Article  Google Scholar 

  201. Zeller, D., Booth, S., Pakhomov, E., Swartz, W. & Pauly, D. Arctic fisheries catches in Russia, USA, and Canada: baselines for neglected ecosystems. Polar Biol. 34, 955–973 (2011).

    Article  Google Scholar 

  202. Pisaric, M. F. J. et al. Impacts of a recent storm surge on an Arctic delta ecosystem examined in the context of the last millennium. Proc. Natl Acad. Sci. USA 108, 8960–8965 (2011).

    Article  Google Scholar 

  203. Notz, D. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    Article  Google Scholar 

  204. Jafarov, E. E., Marchenko, S. S. & Romanovsky, V. E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 6, 613–624 (2012).

    Article  Google Scholar 

  205. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 201719903 (2018).

    Article  Google Scholar 

  206. Clow, G. D. CVPM 1.1: a flexible heat-transfer modeling system for permafrost. Geosci. Model. Dev. 11, 4889–4908 (2018).

    Article  Google Scholar 

  207. Overeem, I. et al. A modeling toolbox for permafrost landscapes. Eos https://doi.org/10.1029/2018EO105155 (2018).

  208. Wang, K., Jafarov, E. & Overeem, I. Sensitivity evaluation of the Kudryavtsev permafrost model. Sci. Total Environ. 720, 137538 (2020).

    Article  Google Scholar 

  209. Matell, N. et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate. Comput. Geosci. 53, 69–79 (2013).

    Article  Google Scholar 

  210. Dupeyrat, L. et al. Effects of ice content on the thermal erosion of permafrost: implications for coastal and fluvial erosion. Permafr. Periglac. Process. 22, 179–187 (2011).

    Article  Google Scholar 

  211. Kobayashi, N., Vidrine, J. C., Nairn, R. B. & Soloman, S. M. Erosion of frozen cliffs due to storm surge on Beaufort Sea coast. J. Coast. Res. 15, 332–344 (1999).

    Google Scholar 

  212. Baar, A. W., Boechat Albernaz, M., van Dijk, W. M. & Kleinhans, M. G. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 10, 4903 (2019).

    Article  Google Scholar 

  213. Shen, H. H. Modelling ocean waves in ice-covered seas. Appl. Ocean Res. 83, 30–36 (2019).

    Article  Google Scholar 

  214. Hülse, P. & Bentley, S. J. A 210Pb sediment budget and granulometric record of sediment fluxes in a subarctic deltaic system: the Great Whale River, Canada. Estuar. Coast. Shelf Sci. 109, 41–52 (2012).

    Article  Google Scholar 

  215. Rogers, W. E. Implementation of sea ice in the wave model SWAN (Naval Research Laboratory, 2019).

  216. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

  217. Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis (National Geophysical Data Center, 2009).

  218. US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).

  219. Government of Canada. Historical hydrometric data. GC https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (2021).

  220. Carson, M. A., Jasper, J. N. & Conly, F. M. Magnitude and sources of sediment input to the Mackenzie Delta, Northwest Territories, 1974–94. Arctic 51, 116–124 (1998).

    Article  Google Scholar 

  221. Lesack, L. F. W., Marsh, P., Hicks, F. E. & Forbes, D. L. Breakup in a large Arctic delta. Geophys. Res. Lett. 41, 1560–1566 (2014).

    Article  Google Scholar 

  222. National Weather Service. River breakup database. NOAA https://www.weather.gov/aprfc/breakupDB?site=488 (2020).

  223. Nienhuis, J. H. & van de Wal, R. S. W. Projections of global delta land loss from sea-level rise in the 21st century. Geophys. Res. Lett. 48, 1–9 (2021).

    Article  Google Scholar 

  224. Kroon, A. et al. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland. Ambio 46, 132–145 (2017). This paper investigates interacting process controls on several deltas in East Greenland, demonstrating the dominance of fluvial processes and the seasonality of wave-driven sediment transport.

    Article  Google Scholar 

  225. Corner, G. D. in Incised Valleys in Time and Space Vol. 85 (eds Dalrymple, R. W., Leckie, D. A. & Tilan, R. W.) 161–178 (Society for Sedimentary Geology, 2006).

  226. Hansen, L. Deltaic infill of a deglaciated arctic fjord, East Greenland: sedimentary facies and sequence stratigraphy. J. Sediment. Res. 74, 422–437 (2004).

    Article  Google Scholar 

  227. Bendixen, M. & Kroon, A. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surf. Process. Landf. 42, 1227–1237 (2017).

    Article  Google Scholar 

  228. Carrivick, J. L. & Quincey, D. J. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob. Planet. Change 116, 156–163 (2014).

    Article  Google Scholar 

  229. North Slope Science Initiative. 2016 Colville River Delta spring breakup monitoring and hydrological assessment (NSSI, 2016).

  230. How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).

    Article  Google Scholar 

  231. Mernild, S. H. & Hasholt, B. Observed runoff, jokulhlaups and suspended sediment load from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. J. Glaciol. 55, 855–858 (2009).

    Article  Google Scholar 

  232. Mikkelsen, A. B., Hasholt, B., Knudsen, N. T. & Nielsen, M. H. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland. Hydrol. Res. 44, 58–67 (2013).

    Article  Google Scholar 

  233. Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C. & Williams, M. A new cycle of jökulhlaups at Russell Glacier, Kangerlussuaq, West Greenland. J. Glaciol. 57, 238–246 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the US National Science Foundation (NSF-OPP awards 2001225 and 1844181).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Irina Overeem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Y. Saito, A. Kroon and L. Vulis, who co-reviewed with E. Foufoula-Georgiou, for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ArcticDEM: https://www.pgc.umn.edu/data/arcticdem/

Supplementary information

Glossary

Delta

Depositional feature that forms where a river enters a standing body of water and supplies sediments more rapidly than they can be redistributed by wave and tidal processes.

Thermokarst lakes

Lakes occupying a closed depression formed by settlement of the ground following thawing of ice-rich permafrost or the melting of massive ice.

Permafrost

Ground (soil or rock, including ice and organic material) that remains at or below 0°C for at least 2 consecutive years.

Glacio-isostatic rebound

The viscoelastic response of the crust that causes a rise of the Earth’s crust after removal of the weight of large land-ice masses.

Forebulges

Flexural bulges in front of a load on the Earth’s crust or upper mantle. The load, typically from ice or sediment, causes the lithosphere to flex by depressing the plate beneath it. The rate of forebulge formation and collapse is controlled by mantle viscosity.

Transgression

Movement of the ocean towards the shore, as a result of sea level rise.

Bayhead deltas

Deltas that develop at the innermost part of estuaries or bays within wave-dominated and mixed-energy systems on transgressive coastlines.

Fetch

The distance that wind blows over open water and generates waves.

Gilbert-type deltas

A type of fluvial-dominated delta forming a wedge of coarse sediments with parallel topsets and inclined foresets sloping downwards to the basin floor.

Land-fast sea ice

Ice that is anchored to the shore or ocean bottom, typically over shallow ocean shelves at continental margins. Fast ice is defined by the fact that it does not move with the winds or currents.

Thaw slumping

The process of slope mass movements caused by thawing of ice-rich permafrost.

Pack ice

Sea ice that is not attached to the shoreline and drifts in response to winds, currents and other forces.

Frazil ice

Small needle-like ice crystals, typically a few millimetres in diameter, suspended in water, that represent the first stages of sea-ice growth. Frazil crystals merge under calm conditions to form thin sheets of ice on the surface.

Excess ice

The volume of ice in the ground that exceeds the total pore volume that the ground would have under natural unfrozen conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overeem, I., Nienhuis, J.H. & Piliouras, A. Ice-dominated Arctic deltas. Nat Rev Earth Environ 3, 225–240 (2022). https://doi.org/10.1038/s43017-022-00268-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00268-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene