Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current status and future challenges in implementing and upscaling vertical farming systems

Abstract

Vertical farming can produce food in a climate-resilient manner, potentially emitting zero pesticides and fertilizers, and with lower land and water use than conventional agriculture. Vertical farming systems (VFS) can meet daily consumer demands for nutritious fresh products, forming a part of resilient food systems—particularly in and around densely populated areas. VFS currently produce a limited range of crops including fruits, vegetables and herbs, but successful implementation of vertical farming as part of mainstream agriculture will require improvements in profitability, energy efficiency, public policy and consumer acceptance. Here we discuss VFS as multi-layer indoor crop cultivation systems, exploring state-of-the-art vertical farming and future challenges in the fields of plant growth, product quality, automation, robotics, system control and environmental sustainability and how research and development, socio-economic and policy-related institutions must work together to ensure successful upscaling of VFS to future food systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key differences between open-field farming and vertical farming.
Fig. 2: Schematic drawings of hydroponic and aeroponic soilless cultivation systems.
Fig. 3: Light quality influences lettuce coloration.
Fig. 4: Sankey diagrams of the conversion of solar energy to PAR.

Similar content being viewed by others

References

  1. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 85, 297–309 (2020).

    Article  Google Scholar 

  3. Beacham, A. M., Vickers, L. H. & Monaghan, J. M. Vertical farming: a summary of approaches to growing skywards. J. Hortic. Sci. Biotechnol. 94, 277–283 (2019).

    Article  Google Scholar 

  4. Kalantari, F., Tahir, O. M., Joni, R. A. & Fatemi, E. Opportunities and challenges in sustainability of vertical farming: a review. J. Landsc. Ecol. 11, 35–60 (2018).

    Article  Google Scholar 

  5. Poorter, H. et al. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212, 838–855 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell, C. A. & Sheibani, F. in Plant Factory (eds Kozai, T. et al.) 167–184 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00010-8

  7. Munns, D. P. D. “The awe in which biologists hold physicists”: Frits Went’s first phytotron at Caltech, and an experimental definition of the biological environment. Hist. Phil. Life Sci. 36, 209–231 (2014).

    Article  Google Scholar 

  8. Den Besten, J. in Plant Factory Using Artificial Light (eds Anpo, M. et al.) 307–317 (Elsevier, 2019); https://doi.org/10.1016/B978-0-12-813973-8.00027-0

  9. Despommier, D. The Vertical Farm: Feeding the World in the 21st Century (Macmillan, 2010).

  10. Kozai, T., Niu, G. & Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production (Elsevier, 2016); https://doi.org/10.1016/C2014-0-01039-8

  11. SharathKumar, M., Heuvelink, E. & Marcelis, L. F. M. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci. 25, 724–727 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Murase, H. The latest development of laser application research in plant factory. Agric. Agric. Sci. Procedia 3, 4–8 (2015).

    Google Scholar 

  13. Jin, W., Urbina, J. L., Heuvelink, E. & Marcelis, L. F. M. Adding far-red to red-blue light-emitting diode light promotes yield of lettuce at different planting densities. Front. Plant Sci. 11, 609977 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kalaitzoglou, P. et al. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Front. Plant Sci. 10, 322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).

    Article  PubMed  Google Scholar 

  16. Sarlikioti, V., de Visser, P. H. B., Buck-Sorlin, G. H. & Marcelis, L. F. M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Ann. Bot. 108, 1065–1073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Folta, K. M. Breeding new varieties for controlled environments. Plant Biol. 21, 6–12 (2019).

    Article  PubMed  Google Scholar 

  18. Louarn, G. & Song, Y. Two decades of functional–structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Joshi, J. et al. A combination of downward lighting and supplemental upward lighting improves plant growth in a closed plant factory with artificial lighting. HortScience 52, 831–835 (2017).

    Article  Google Scholar 

  20. Kaiser, E., Morales, A. & Harbinson, J. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiol. 176, 977–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Vialet-Chabrand, S. & Lawson, T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J. Exp. Bot. 70, 2839–2855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vialet-Chabrand, S., Matthews, J. S. A., Simkin, A. J., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Resco de Dios, V. Circadian regulation and diurnal variation in gas exchange. Plant Physiol. 175, 3–4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simon, N. M. L., Graham, C. A., Comben, N. E., Hetherington, A. M. & Dodd, A. N. The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. 183, 317–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poorter, H. et al. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482 (1997).

    Article  CAS  Google Scholar 

  26. Kitaya, Y., Tsuruyama, J., Shibuya, T., Yoshida, M. & Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 31, 177–182 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Frantz, J. M., Ritchie, G., Cometti, N. N., Robinson, J. & Bugbee, B. Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce. J. Am. Soc. Hortic. Sci. 129, 331–338 (2004).

    Article  PubMed  Google Scholar 

  28. Lim, T. & Kim, Y. H. Analysis of airflow pattern in plant factory with different inlet and outlet locations using computational fluid dynamics. J. Biosyst. Eng. 39, 310–317 (2014).

    Article  Google Scholar 

  29. Ji, Y. et al. Far‐red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato. New Phytol. 228, 1914–1925 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012); https://doi.org/10.1016/C2009-0-63043-9

  31. Brilli, F., Loreto, F. & Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 10, 264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).

    Article  Google Scholar 

  33. Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S. & Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 234, 275–289 (2018).

    Article  Google Scholar 

  34. Pizarro, L. & Stange, C. Light-dependent regulation of carotenoid biosynthesis in plants. Cienc. Investig. Agrar. 36, 143–162 (2009).

    Google Scholar 

  35. Gautier, H., Massot, C., Stevens, R., Sérino, S. & Génard, M. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 103, 495–504 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Min, Q., Marcelis, L. F. M., Nicole, C. C. S. & Woltering, E. J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life. Front. Plant Sci. 12, 615355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jin, H. et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 19, 6150–6161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taulavuori, K., Hyöky, V., Oksanen, J., Taulavuori, E. & Julkunen-Tiitto, R. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 121, 145–150 (2016).

    Article  CAS  Google Scholar 

  39. Lefsrud, M. G., Kopsell, D. A., Kopsell, D. E. & Curran-Celentano, J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol. Plant. 127, 624–631 (2006).

    Article  CAS  Google Scholar 

  40. Lefsrud, M. G., Kopsell, D. A. & Sams, C. E. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43, 2243–2244 (2008).

    Article  Google Scholar 

  41. Carvalho, S. D., Schwieterman, M. L., Abrahan, C. E., Colquhoun, T. A. & Folta, K. M. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci. 7, 1328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samuolienė, G., Sirtautas, R., Brazaitytė, A. & Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134, 1494–1499 (2012).

    Article  PubMed  Google Scholar 

  43. Voogt, W., Holwerda, H. T. & Khodabaks, R. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric. 90, 906–913 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Eldridge, B. M. et al. Getting to the roots of aeroponic indoor farming. New Phytol. 228, 1183–1192 (2020).

    Article  PubMed  Google Scholar 

  45. Imam, M., Zhang, S., Ma, J., Wang, H. & Wang, F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients 9, 671 (2017).

    Article  PubMed Central  Google Scholar 

  46. Vasconcelos, M. W., Gruissem, W. & Bhullar, N. K. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr. Opin. Biotechnol. 44, 8–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Gómez, C. & Jiménez, J. Effect of end-of-production high-energy radiation on nutritional quality of indoor-grown red-leaf lettuce. HortScience 55, 1055–1060 (2020).

    Article  Google Scholar 

  48. Kozai, T. & Niu, G. in Plant Factory (eds Kozai, T. et al.) 7–34 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00002-9

  49. Jacobson, T. A. et al. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2, 691–701 (2019).

    Article  Google Scholar 

  50. Hemming, S., de Zwart, F., Elings, A., Righini, I. & Petropoulou, A. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors 19, 801807 (2019).

    Article  ADS  Google Scholar 

  51. Jahnke, S. et al. pheno Seeder—a robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 172, 1358–1370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arad, B. et al. Development of a sweet pepper harvesting robot. J. Field Robot. 37, 1027–1039 (2020).

    Article  Google Scholar 

  53. Lehnert, C., McCool, C., Sa, I. & Perez, T. Performance improvements of a sweet pepper harvesting robot in protected cropping environments. J. Field Robot. https://doi.org/10.1002/rob.21973 (2020).

  54. Ling, X., Zhao, Y., Gong, L., Liu, C. & Wang, T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robot. Auton. Syst. 114, 134–143 (2019).

    Article  Google Scholar 

  55. Xiong, Y., Ge, Y., Grimstad, L. & From, P. J. An autonomous strawberry‐harvesting robot: design, development, integration, and field evaluation. J. Field Robot. 37, 202–224 (2020).

    Article  Google Scholar 

  56. Van Henten, E. J. et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng. 94, 317–323 (2006).

    Article  Google Scholar 

  57. Bac, C. W., van Henten, E. J., Hemming, J. & Edan, Y. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J. Field Robot. 31, 888–911 (2014).

    Article  Google Scholar 

  58. Kootstra, G., Wang, X., Blok, P. M., Hemming, J. & van Henten, E. Selective harvesting robotics: current research, trends, and future directions. Curr. Robot. Rep. 2, 95–104 (2021).

    Article  Google Scholar 

  59. Blok, P. M., Evert, F. K., Tielen, A. P. M., Henten, E. J. & Kootstra, G. The effect of data augmentation and network simplification on the image‐based detection of broccoli heads with Mask R‐CNN. J. Field Robot. 38, 85–104 (2021).

    Article  Google Scholar 

  60. Lehnert, C., Tsai, D., Eriksson, A. & McCool, C. 3D Move to see: multi-perspective visual servoing towards the next best view within unstructured and occluded environments. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3890–3897 (IEEE, 2019); https://doi.org/10.1109/IROS40897.2019.8967918

  61. Zhang, B., Xie, Y., Zhou, J., Wang, K. & Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: a review. Comput. Electron. Agric. 177, 105694 (2020).

    Article  Google Scholar 

  62. Vasconez, J. P., Kantor, G. A. & Auat Cheein, F. A. Human–robot interaction in agriculture: a survey and current challenges. Biosyst. Eng. 179, 35–48 (2019).

    Article  Google Scholar 

  63. Shimizu, H., Fukuda, K., Nishida, Y. & Ogura, T. in Plant Factory Vol. 26 (eds Kozai, T. et al.) 377–382 (Elsevier, 2020).

  64. Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies (W. W. Norton, 2005).

  65. Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporatingseasonal and dry-year water scarcity into water risk assessments. Elementa (Wash. DC) 44, 000083 (2016).

    Google Scholar 

  66. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Sustainable Food Systems: Concept and Framework (FAO, 2018).

  68. Kikuchi, Y., Kanematsu, Y., Yoshikawa, N., Okubo, T. & Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: a case study in Japan. J. Clean. Prod. 186, 703–717 (2018).

    Article  Google Scholar 

  69. Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I. & Stanghellini, C. Plant factories versus greenhouses: comparison of resource use efficiency. Agric. Syst. 160, 31–43 (2018).

    Article  Google Scholar 

  70. Bartzas, G., Zaharaki, D. & Komnitsas, K. Life cycle assessment of open field and greenhouse cultivation of lettuce and barley. Inf. Process. Agric. 2, 191–207 (2015).

    Google Scholar 

  71. Kusuma, P., Pattison, P. M. & Bugbee, B. From physics to fixtures to food: current and potential LED efficacy. Hortic. Res. 7, 56 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grubisic, M., van Grunsven, R. H. A., Kyba, C. C. M., Manfrin, A. & Hölker, F. Insect declines and agroecosystems: does light pollution matter? Ann. Appl. Biol. 173, 180–189 (2018).

    Article  Google Scholar 

  73. Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. 7, 1728 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Roberts, J. M. et al. Vertical farming systems bring new considerations for pest and disease management. Ann. Appl. Biol. 176, 226–232 (2020).

    Article  Google Scholar 

  75. Lee, S. & Lee, J. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci. Hortic. 195, 206–215 (2015).

    Article  CAS  Google Scholar 

  76. Van Gerrewey, T. et al. Microbe–plant growing media interactions modulate the effectiveness of bacterial amendments on lettuce performance inside a plant factory with artificial lighting. Agronomy 10, 101456 (2020).

    Article  Google Scholar 

  77. Hosseinzadeh, S., Verheust, Y., Bonarrigo, G. & Van Hulle, S. Closed hydroponic systems: operational parameters, root exudates occurrence and related water treatment. Rev. Environ. Sci. Bio/Technol. 16, 59–79 (2017).

    Article  Google Scholar 

  78. du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).

    Article  Google Scholar 

  79. Rouphael, Y. & Colla, G. Editorial: biostimulants in agriculture. Front. Plant Sci. 11, 40 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lazzarin, M. et al. LEDs make it resilient: effects on plant growth and defense. Trends Plant Sci. 26, 496–508 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Stratmann, J. Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 8, 526–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  Google Scholar 

  83. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Sandström, V. et al. The role of trade in the greenhouse gas footprints of EU diets. Glob. Food Sec. 19, 48–55 (2018).

    Article  Google Scholar 

  85. Armanda, D. T., Guinée, J. B. & Tukker, A. The second green revolution: innovative urban agriculture’s contribution to food security and sustainability—a review. Glob. Food Sec. 22, 13–24 (2019).

    Article  Google Scholar 

  86. Graamans, L., Tenpierik, M., van den Dobbelsteen, A. & Stanghellini, C. Plant factories: reducing energy demand at high internal heat loads through façade design. Appl. Energy 262, 114544 (2020).

    Article  Google Scholar 

  87. Overview of Electricity Production and Use in Europe (EEA, accessed 6 October 2021). https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-3/assessment-1

  88. Waller, L. & Gugganig, M. Re-visioning public engagement with emerging technology: a digital methods experiment on ‘vertical farming’. Public Underst. Sci. https://doi.org/10.1177/0963662521990977 (2021).

  89. Broad, G. M. Know your indoor farmer: square roots, techno-local food, and transparency as publicity. Am. Behav. Sci. 64, 1588–1606 (2020).

    Article  Google Scholar 

  90. Specht, K., Weith, T., Swoboda, K. & Siebert, R. Socially acceptable urban agriculture businesses. Agron. Sustain. Dev. 36, 17 (2016).

    Article  Google Scholar 

  91. Benis, K. & Ferrão, P. Commercial farming within the urban built environment—taking stock of an evolving field in northern countries. Glob. Food Sec. 17, 30–37 (2018).

    Article  Google Scholar 

  92. Petrovics, D. & Giezen, M. Planning for sustainable urban food systems: an analysis of the up-scaling potential of vertical farming. J. Environ. Plan. Manage. https://doi.org/10.1080/09640568.2021.1903404 (2021).

  93. Specht, K., Siebert, R. & Thomaier, S. Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany. Agric. Hum. Values 33, 753–769 (2016).

    Article  Google Scholar 

  94. Eigenbrod, C. & Gruda, N. Urban vegetable for food security in cities: a review. Agron. Sustain. Dev. 35, 483–498 (2015).

    Article  Google Scholar 

  95. Butturini, M. & Marcelis, L. F. M. in Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production 2nd edn (eds Kozai, T. et al.) 77–91 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00004-2

  96. Benke, K. & Tomkins, B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13, 13–26 (2017).

    Google Scholar 

  97. Kosorić, V., Huang, H., Tablada, A., Lau, S.-K. & Tan, H. T. W. Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore. Renew. Sustain. Energy Rev. 111, 197–214 (2019).

    Article  Google Scholar 

  98. Torreggiani, D., Dall’Ara, E. & Tassinari, P. The urban nature of agriculture: bidirectional trends between city and countryside. Cities 29, 412–416 (2012).

    Article  Google Scholar 

  99. Poiroux-Gonord, F. et al. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 58, 12065–12082 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Xiong, H., Dalhaus, T., Wang, P. & Huang, J. Blockchain technology for agriculture: applications and rationale. Front. Blockchain 3, 7 (2020).

    Article  ADS  Google Scholar 

  101. Fairbairn, M. & Guthman, J. Agri-food tech discovers silver linings in the pandemic. Agric. Hum. Values 37, 587–588 (2020).

    Article  Google Scholar 

  102. Clapp, J. & Ruder, S.-L. Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ. Polit. 20, 49–69 (2020).

    Article  Google Scholar 

  103. Diehl, J. A. et al. Feeding cities: Singapore’s approach to land use planning for urban agriculture. Glob. Food Sec. 26, 100377 (2020).

    Article  Google Scholar 

  104. Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: how do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 24, 100347 (2020).

    Article  Google Scholar 

  105. Moor, J. H. Why we need better ethics for emerging technologies. Ethics Inf. Technol. 7, 111–119 (2005).

    Article  Google Scholar 

  106. Final Paper on a Strategic Approach to EU Agricultural Research and Innovation (European Commission, 2016); https://ec.europa.eu/programmes/horizon2020/en/news/final-paper-strategic-approach-eu-agricultural-research-and-innovation

  107. Forging a Climate-Resilient Europe—the New EU Strategy on Adaptation to Climate Change (European Commission, 2021); https://ec.europa.eu/clima/sites/clima/files/adaptation/what/docs/eu_strategy_2021.pdf

  108. Regulation of the European Parliament and of the Council Vol. 53 (European Commission, 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN

  109. The European Green Deal (European Commission, 2019); https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf

  110. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System (European Commission, 2020); https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590404602495&uri=CELEX%3A52020DC0381

  111. USDA announces grants for urban agriculture and innovative production. USDA FSA (6 May 2020); https://www.fsa.usda.gov/news-room/news-releases/2020/usda-announces-grants-for-urban-agriculture-and-innovative-production

  112. 2018 Farm Bill Primer: Support for Urban Agriculture Vol. 2018 (CRS, 2019).

  113. Agriculture Improvement Act of 2018 (US Public Law, 2018); https://www.govinfo.gov/content/pkg/PLAW-115publ334/pdf/PLAW-115publ334.pdf

  114. Pardey, P. G., Chan-Kang, C., Dehmer, S. P. & Beddow, J. M. Agricultural R&D is on the move. Nature 537, 301–303 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Hu, R. et al. Privatization, public R & D policy, and private R & D investment in China’s agriculture. J. Agric. Resour. Econ. 36, 416–432 (2011).

    Google Scholar 

  116. Montesclaros, J. M. L., Liu, S. & Teng, P. P. S. Scaling Commercial Urban Agriculture in Singapore: An Assessment of the Viability of Leafy Vegetable Production Using Plant Factories with Artificial Lighting in a 2017 Land Tender (First Tranche) Nanyang Technological University Report (2018); https://www.rsis.edu.sg/wp-content/uploads/2018/02/SUBMISSION_Reformat-NTS-Report-_-Scaling-Commercial-Urban-Agriculture_revised-from-Email-February.pdf

  117. Kozai, T., Niu, G. & Takagaki, M. Plant Factory, an Indoor Vertical Farming System for Efficient Quality Food Production (Academic Press, 2020); https://doi.org/10.1016/B978-0-12-816691-8.01001-3

  118. Huang, J., Hu, R. & Rozelle, S. China’s agricultural research system and reforms: challenges and implications for developing countries. Asian J. Agric. Dev. 1, 98–112 (2004).

    Google Scholar 

  119. Abbasi, A. S. & Aamir, S. M. Sustainable development: factors influencing public intention towards vertical farming in China and moderating role of awareness. J. Soc. Polit. Sci. 4, 2615–3718 (2021).

    Google Scholar 

  120. Goodman, W. & Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019).

    Article  Google Scholar 

  121. Swierstra, T., van Est, R. & Boenink, M. Taking care of the symbolic order: how converging technologies challenge our concepts. Nanoethics 3, 269–280 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Vertical Farming Shoots…Organic in the Foot? 49–50 (ARC, 2020). https://www.arc2020.eu/vertical-farming-shoots-organic-in-the-foot/

  123. Report of the Forty-First Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses (FAO, WHO, 2020); http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-41%252FReport%252FAdoption%252FREP20_NFSDUe.pdf

  124. Google Trends 2004 to 2021: Vertical Farming (Google, accessed 6 October 2020); https://trends.google.com/trends/explore?date=2004-01-01%202021-03-12&q=vertical%20farming

  125. Pattison, P. M., Tsao, J. Y., Brainard, G. C. & Bugbee, B. LEDs for photons, physiology and food. Nature 563, 493–500 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. SkyGreens (SkyGreens, 2010). https://www.skygreens.com/about-skygreens

  127. Ravishankar, E. et al. Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Rep. Phys. Sci. 2, 100381 (2021).

    Article  CAS  Google Scholar 

  128. Brynjolfsson, E., Hu, Y. J. & Smith, M. D. The longer tail: the changing shape of Amazon’s sales distribution curve. SSRN Electron. J. https://doi.org/10.2139/ssrn.1679991 (2010).

  129. Anderson, C. The long tail. Wired Magazine (10 January 2004); https://www.wired.com/2004/10/tail/

  130. Schmidt, S. M., Belisle, M. & Frommer, W. B. The evolving landscape around genome editing in agriculture. EMBO Rep. 21, 19–22 (2020).

    Article  Google Scholar 

  131. Huebbers, J. W. & Buyel, J. F. On the verge of the market—plant factories for the automated and standardized production of biopharmaceuticals. Biotechnol. Adv. 46, 107681 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Ditzler, L., van Apeldoorn, D. F., Schulte, R. P. O., Tittonell, P. & Rossing, W. A. H. Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm. Eur. J. Agron. 122, 126197 (2021).

    Article  Google Scholar 

  133. Rosenqvist, E., Großkinsky, D. K., Ottosen, C.-O. & van de Zedde, R. The phenotyping dilemma—the challenges of a diversified phenotyping community. Front. Plant Sci. 10, 16 (2019).

    Article  Google Scholar 

  134. Steinwand, M. A. & Ronald, P. C. Crop biotechnology and the future of food. Nat. Food 1, 273–283 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose research could not be cited due to space limits.

Author information

Authors and Affiliations

Authors

Contributions

S.H.v.D., M.S., M.B., R.S.K. and L.F.M.M. defined the structure and topics of the Review. S.H.v.D. led the writing and reviewing process together with M.S., M.B., E.K. and L.F.M.M. The main contributors for each section are as follows: for the Abstract and Introduction, S.H.v.D.; for ‘Crop growth’, M.S., E.K., E.H., S.V.-C. and S.H.v.D.; for ‘Product quality’, E.J.W., J.C.V., R.E.S. and S.H.v.D.; for ‘Automation and robotics’, G.K., R.v.d.Z., M.B. and S.H.v.D.; for ‘Environmental sustainability’, L.J.A.G., W.v.I., R.S.K., C.S. and S.H.v.D.; for ‘Socio-economic impact’, L.K. and S.H.v.D.; for ‘Public policy’, A.L., M.B. and S.H.v.D.; for ‘Challenges and outlook’, M.B. and S.H.v.D.; for the parts on climate control, L.J.A.G., C.S., Y.Z. and M.K.; and for the parts on crop control, S.V.-C., E.H. and E.K. M.S. created Fig. 1. M.S. and S.H.v.D. created Figs. 2 and 3. L.J.A.G. created Fig. 4. M.B. conceived Box 1, M.S. and M.B. gathered the photos, and R.K. and S.H.v.D wrote the text. All authors proofread and approved the submitted work.

Corresponding authors

Correspondence to S. H. van Delden or L. F. M. Marcelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Toyoki Kozai, Jim Monaghan and Genhua Niu for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Delden, S.H., SharathKumar, M., Butturini, M. et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat Food 2, 944–956 (2021). https://doi.org/10.1038/s43016-021-00402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00402-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene