Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of single photons in quantum metrology, biology and the foundations of quantum physics

Abstract

With the development of photonic quantum technologies, single photons have become key for various applications including quantum communication and quantum computing, discussed in an accompanying Review. Here we overview the applications of single photons in quantum metrology, biology and experiments probing the foundations of quantum physics. For each of these applications, we outline the main milestones reached so far, the remaining challenges, and the improvements that could be made in the future. We conclude with a wish list for future single-photon sources.

Key points

  • Detecting a single-photon or an N-photon state is not easy and requires specific detectors with precise calibration.

  • Quantum metrology with single photons can reach the ultimate limit in terms of metrology standards.

  • Natural biological systems, such as the human eye and processes in photosynthesis, are sensitive to the detection of single photons.

  • Single-photon experiments are used to test the limits of quantum mechanics and uncover connections to other theories such as general relativity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Difference between a coherent and a Fock state.
Fig. 2: Application of single-photon sources in biology.
Fig. 3: Experiment investigating quantum tunnelling.

Similar content being viewed by others

References

  1. Couteau, C. et al. Applications of single photons to quantum communication and computing. Nat. Rev. Phys. https://doi.org/10.1038/s42254-023-00583-2 (2023).

    Article  Google Scholar 

  2. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  ADS  Google Scholar 

  3. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  4. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2019).

    Article  ADS  Google Scholar 

  5. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review featured. Appl. Phys. Rev. 6, 041303 (2019).

    Article  ADS  Google Scholar 

  6. Lee, J. et al. Integrated single photon emitters. AVS Quantum Sci. 2, 031701 (2020).

    Article  ADS  Google Scholar 

  7. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    Article  ADS  Google Scholar 

  8. Abudayyeh, H. A. & Rapaport, R. Quantum emitters coupled to circular nanoantennas for high-brightness quantum light sources. Quantum Sci. Technol. 2, 034004 (2017).

    Article  ADS  Google Scholar 

  9. Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    Article  ADS  Google Scholar 

  10. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  ADS  Google Scholar 

  11. Sabines-Chesterking, J. et al. Twin-beam sub-shot-noise raster-scanning microscope. Opt. Express 27, 30810–30818 (2019).

    Article  ADS  Google Scholar 

  12. Adesso, G. et al. Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 79, 040305 (2009).

    Article  ADS  Google Scholar 

  13. Jakeman, E. & Rarity, J. G. The use of pair production processes to reduce quantum noise in transmission measurements. Opt. Commun. 59, 219–223 (1986).

    Article  ADS  Google Scholar 

  14. Bondurant, R. S. & Shapiro, J. H. Squeezed states in phase-sensing interferometers. Phys. Rev. D 30, 2548–2556 (1984).

    Article  ADS  Google Scholar 

  15. Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).

    Article  ADS  Google Scholar 

  16. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D. 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  17. Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    Article  ADS  Google Scholar 

  18. Rablau, C. LiDAR: a new self-driving vehicle for introducing optics to broader engineering and non-engineering audiences. In Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019 Vol. 11143 (SPIE, 2019).

  19. Reddy, D.V. et al. Exceeding 95% system efficiency within the telecom C-band in superconducting nanowire single photon detectors. In Conference on Lasers and Electro-Optics (IEEE, 2019).

  20. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  21. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    Article  ADS  Google Scholar 

  22. Wollman, E. E. et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Opt. Express 25, 26792–26801 (2017).

    Article  ADS  Google Scholar 

  23. Giustina, M. et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013).

    Article  ADS  Google Scholar 

  24. Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article  ADS  Google Scholar 

  25. Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article  ADS  Google Scholar 

  26. Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article  ADS  Google Scholar 

  27. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  28. Cahall, C. et al. Multi-photon detection using a conventional superconducting nanowire single-photon detector. Optica 4, 1534–1535 (2017).

    Article  ADS  Google Scholar 

  29. Kok, P. & Braunstein, S. L. Detection devices in entanglement-based optical state preparation. Phys. Rev. A 63, 033812 (2001).

    Article  ADS  Google Scholar 

  30. Sahin, D. et al. in Superconducting Devices in Quantum Optics (eds Hadfield, R. H. & Johansson, G.) 61–83 (Springer, 2016).

  31. Banaszek, K. & Walmsley, I. A. Photon counting with a loop detector. Opt. Lett. 28, 52–54 (2003).

    Article  ADS  Google Scholar 

  32. Fitch, M. J. et al. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 68, 043814 (2003).

    Article  ADS  Google Scholar 

  33. Gerrits, T. et al. in Superconducting Devices in Quantum Optics (eds Hadfield, R. H. & Johansson, G.) 31–60 (Springer, 2016).

  34. Gerrits, T. et al. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime. Opt. Express 20, 23798–23810 (2012).

    Article  ADS  Google Scholar 

  35. Levine, Z. H. et al. Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066–2073 (2012).

    Article  ADS  Google Scholar 

  36. Levine, Z. H. et al. Photon-number uncertainty in a superconducting transition edge sensor beyond resolved-photon-number determination. J. Opt. Soc. Am. B 31, B20–B24 (2014).

    Article  ADS  Google Scholar 

  37. Burenkov, I. A. et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A 95, 053806 (2017).

    Article  ADS  Google Scholar 

  38. Goldschmidt, E. A. et al. Mode reconstruction of a light field by multiphoton statistics. Phys. Rev. A 88, 013822 (2013).

    Article  ADS  Google Scholar 

  39. Gerry, C. & Knight, P. Introductory Quantum Optics (Cambridge Univ. Press, 2004).

  40. Hanbury Brown, R. & Twiss, R. Q. A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956).

    Article  ADS  Google Scholar 

  41. Sturges, T. J. et al. Quantum simulations with multiphoton Fock states. npj Quantum Inf. 7, 91 (2021).

    Article  ADS  Google Scholar 

  42. Scheel, S., Nemoto, K., Munro, W. J. & Knight, P. L. Measurement-induced nonlinearity in linear optics. Phys. Rev. A 68, 032310 (2003).

    Article  ADS  Google Scholar 

  43. Ourjoumtsev, A. et al. Generating optical schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  44. Ourjoumtsev, A. et al. Generation of optical Schrödinger cats from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  45. Gerrits, T. et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010).

    Article  ADS  Google Scholar 

  46. Wakui, K. et al. Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express 15, 3568–3574 (2007).

    Article  ADS  Google Scholar 

  47. Ralph, T. C. et al. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

    Article  ADS  Google Scholar 

  48. Lee, S.-Y. et al. Quantum phase estimation using a multi-headed cat state. J. Opt. Soc. Am. B 32, 1186–1192 (2015).

    Article  ADS  Google Scholar 

  49. Dowling, J. P. Quantum optical metrology — the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

    Article  ADS  Google Scholar 

  50. Matthews, J. C. F. et al. Towards practical quantum metrology with photon counting. npj Quantum Inf. 2, 16023 (2016).

    Article  ADS  Google Scholar 

  51. Slussarenko, S. et al. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photon. 11, 700–703 (2017).

    Article  ADS  Google Scholar 

  52. You, C. et al. Multiphoton quantum metrology without pre-and post-selected measurements. in Frontiers in Optics and Laser Science APS/DLS (Optical Society of America, 2019).

  53. Tsang, M. Conservative classical and quantum resolution limits for incoherent imaging. J. Mod. Opt. 65, 1385–1391 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  54. Ansari, V. et al. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).

    Article  ADS  Google Scholar 

  55. Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020).

    Article  ADS  Google Scholar 

  56. Ebrey, T. & Koutalos, Y. Vertebrate photoreceptors. Prog. Retin. Eye Res. 20, 49–94 (2001).

    Article  Google Scholar 

  57. Bialek, W. Biophysics: Searching for Principles (Princeton Univ. Press, 2012).

  58. Dowling, J. E. The Retina (Harvard Univ. Press, 1987).

  59. Hecht, S., Shlaer, S. & Pirenne, M. H. Energy, quanta, and vision. J. Gen. Physiol. 25, 819–840 (1942).

    Article  Google Scholar 

  60. Sakitt, B. Counting every quantum. J. Physiol. 223, 131–150 (1972).

    Article  Google Scholar 

  61. Teich, M. C., Prucnal, P. R., Vannucci, G., Breton, M. E. & McGill, W. J. Multiplication noise in the human visual system at threshold: 1 Quantum fluctuations and minimum detectable energy. J. Opt. Soc. Am. 72, 419–431 (1982).

    Article  ADS  Google Scholar 

  62. Barlow, H. B. Retinal noise and absolute threshold. J. Opt. Soc. Am. 46, 634–639 (1956).

    Article  ADS  Google Scholar 

  63. Rieke, F. & Baylor, D. A. Origin of reproducibility in the responses of retinal rods to single photons. Biophys. J. 75, 1836–1857 (1998).

    Article  ADS  Google Scholar 

  64. Phan, N. M., Cheng, M. F., Bessarab, D. A. & Krivitsky, L. A. Interaction of fixed number of photons with retinal rod cells. Phys. Rev. Lett. 112, 213601 (2014).

    Article  ADS  Google Scholar 

  65. Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M. & Krivitsky, L. A. Measurement of photon statistics with live photoreceptor cells. Phys. Rev. Lett. 109, 113601 (2012).

    Article  ADS  Google Scholar 

  66. Tinsley, J. N. et al. Direct detection of a single photon by humans. Nat. Commun. 7, 12172 (2016).

    Article  ADS  Google Scholar 

  67. Arndt, M., Juffmann, T. & Vedral, V. Quantum physics meets biology. HFSP J. 3, 386 (2009).

    Article  Google Scholar 

  68. Sharpe, L. T., Stockman, A., Fach, C. C. & Markstahler, U. Temporal and spatial summation in the human rod visual system. J. Physiol. 463, 325–348 (1993).

    Article  Google Scholar 

  69. Holmes, R., Victora, M., Wang, R. F. & Kwiat, P. G. Measuring temporal summation in visual detection with a single-photon source. Vis. Res. 140, 33–43 (2017).

    Article  Google Scholar 

  70. Rieke, F. & Baylor, D. A. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J. 71, 2553–2572 (1996).

    Article  ADS  Google Scholar 

  71. Rieke, F. Seeing in the dark: retinal processing and absolute visual threshold. Senses A Compr. Ref. Vis. 1, 393–412 (2008).

    Article  Google Scholar 

  72. Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288 (1999).

    Article  Google Scholar 

  73. Sekatski, P., Brunner, N., Branciard, C., Gisin, N. & Simon, C. Towards quantum experiments with human eyes as detectors based on cloning via stimulated emission. Phys. Rev. Lett. 103, 113601 (2009).

    Article  ADS  Google Scholar 

  74. Brunner, N., Branciard, C. & Gisin, N. Possible entanglement detection with the naked eye. Phys. Rev. A 78, 052110 (2008).

    Article  ADS  Google Scholar 

  75. Vivoli, V. C., Sekatski, P. & Sangouard, N. What does it take to detect entanglement with the human eye? Optica 3, 473–476 (2016).

    Article  ADS  Google Scholar 

  76. van Grondelle, R. & Novoderezhkin, V. I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006).

    Article  Google Scholar 

  77. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  78. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766 (2010).

    Article  ADS  Google Scholar 

  79. Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. & van Hulst, N. F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).

    Article  ADS  Google Scholar 

  80. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  81. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  Google Scholar 

  82. Dayan, B., Pe’er, A., Friesem, A. A. & Silberberg, Y. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005).

    Article  ADS  Google Scholar 

  83. Gea-Banacloche, J. Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603 (1989).

    Article  ADS  Google Scholar 

  84. Upton, L. et al. Optically excited entangled states in organic molecules illuminate the dark. J. Phys. Chem. Lett. 4, 2046–2052 (2013).

    Article  Google Scholar 

  85. Villabona-Monsalve, J. P., Varnavski, O., Palfey, B. A. & Goodson, T. Two-photon excitation of flavins and flavoproteins with classical and quantum light. J. Am. Chem. Soc. 140, 14562–14566 (2018).

    Article  Google Scholar 

  86. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  Google Scholar 

  87. Couteau, C. Spontaneous parametric down-conversion. Cont. Phys. 59, 291–304 (2018).

    Article  ADS  Google Scholar 

  88. Kauten, T., Pressl, B., Kaufmann, T. & Weihs, G. Measurement and modeling of the nonlinearity of photovoltaic and Geiger-mode photodiodes. Rev. Sci. Instrum. 85, 063102 (2014).

    Article  ADS  Google Scholar 

  89. Zeilinger, A., Weihs, G., Jennewein, T. & Aspelmeyer, M. Happy centenary, photon. Nature 433, 230–238 (2005).

    Article  ADS  Google Scholar 

  90. Sorkin, R. D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Sinha, U., Couteau, C., Jennewein, T., Laflamme, R. & Weihs, G. Ruling out multi-order interference in quantum mechanics. Science 329, 418–421 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Hickmann, J. M., Fonseca, E. J. S. & Jesus-Silva, A. J. Born’s rule and the interference of photons with orbital angular momentum by a triangular slit. Europhys. Lett. 96, 64006 (2011).

    Article  ADS  Google Scholar 

  93. Kauten, T. et al. Obtaining tight bounds on higher-order interferences with a 5-path interferometer. N. J. Phys. 19, 033017 (2017).

    Article  MATH  Google Scholar 

  94. Adler, S. L. Quaternionic Quantum Mechanics and Quantum Fields. International Series of Monographs on Physics Vol. 88 (Oxford Univ. Press, 1995).

  95. Peres, A. Proposed test for complex versus quaternion quantum theory. Phys. Rev. Lett. 42, 683 (1979).

    Article  ADS  Google Scholar 

  96. Procopio, L. M. et al. Single-photon test of hyper-complex quantum theories using a metamaterial. Nat. Commun. 8, 15044 (2017).

    Article  ADS  Google Scholar 

  97. Adler, S. L. Peres experiment using photons: no test for hypercomplex (quaternionic) quantum theories. Phys. Rev. A 95, 060101 (2017).

    Article  ADS  Google Scholar 

  98. Procopio, L. M., Rozema, L. A., Dakic, B. & Walther, P. Comment on ‘Peres experiment using photons: no test for hypercomplex (quaternionic) quantum theories’. Phys. Rev. A 96, 036101 (2017).

    Article  ADS  Google Scholar 

  99. Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708 (1993).

    Article  ADS  Google Scholar 

  100. Kwiat, P. G. & Chiao, R. Y. Observation of a nonclassical Berry’s phase for the photon. Phys. Rev. Lett. 66, 588 (1991).

    Article  ADS  Google Scholar 

  101. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988).

    Article  ADS  Google Scholar 

  102. Dressel, J., Malik, M., Miatto, F. M., Jordan, A. N. & Boyd, R. W. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307 (2014).

    Article  ADS  Google Scholar 

  103. Kocsis, S. et al. Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011).

    Article  ADS  MATH  Google Scholar 

  104. Bliokh, K., Bekshaev, A., Kofman, A. G. & Nori, F. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. N. J. Phys. 15, 073022 (2013).

    Article  MATH  Google Scholar 

  105. Chrapkiewicz, R., Jachura, M., Banaszek, K. & Wasilewski, W. Hologram of a single photon. Nat. Photon. 10, 577–579 (2016).

    Article  ADS  Google Scholar 

  106. Holland, P. R. The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics (Cambridge Univ. Press, 1993).

  107. Bohm, D., Hiley, B. J. & Kaloyerou, P. N. A causal interpretation of quantum fields. Phys. Rep. 6, 349 (1987).

    Google Scholar 

  108. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  ADS  Google Scholar 

  109. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  ADS  Google Scholar 

  110. Heisenberg, W. The Physical Principles of the Quantum Theory (Univ. Chicago Press, 1930).

  111. Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003).

    Article  ADS  Google Scholar 

  112. Rozema, L. A. et al. Violation of Heisenberg’s measurement–disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012).

    Article  ADS  Google Scholar 

  113. Branciard, C. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl Acad. Sci. USA 110, 6742–6747 (2013).

    Article  ADS  Google Scholar 

  114. Ringbauer, M. et al. Experimental joint quantum measurements with minimum uncertainty. Phys. Rev. Lett. 112, 020401 (2014).

    Article  ADS  Google Scholar 

  115. Hilweg, C. et al. Gravitationally induced phase shift on a single photon. N. J. Phys. 19, 033028 (2017).

    Article  MATH  Google Scholar 

  116. Faccio, D., Velten, A. & Wetzstein, G. Non-line-of-sight imaging. Nat. Rev. Phys. 2, 318–327 (2020).

    Article  Google Scholar 

  117. Whittaker, R. et al. Absorption spectroscopy at the ultimate quantum limit from single-photon states. N. J. Phys. 19, 033028 (2017).

    Article  Google Scholar 

  118. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles of Neural Science 5th edn, Chapter 26 (McGraw-Hill, 2012).

  119. Mirkovic, T. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

C.C. and T.D. thank the COST Action MP1403 ‘Nanoscale Quantum Optics’, supported by COST (European Cooperation in Science and Technology). C.C. thanks the Graduate School NANO-PHOT ANR project. R.P. was supported by the European Molecular Biology Laboratory. G.W. acknowledges support by the Austrian Science Fund FWF, project F7114 (SFB BeyondC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussing and writing the article. C.C. coordinated the contributions and provided oversight.

Corresponding author

Correspondence to Christophe Couteau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Igor Aharonovich, Stéphane Clemmen, Peter Lodahl and Pascale Senellart for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couteau, C., Barz, S., Durt, T. et al. Applications of single photons in quantum metrology, biology and the foundations of quantum physics. Nat Rev Phys 5, 354–363 (2023). https://doi.org/10.1038/s42254-023-00589-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00589-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing