Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Using metadynamics to explore complex free-energy landscapes

Abstract

Metadynamics is an atomistic simulation technique that allows, within the same framework, acceleration of rare events and estimation of the free energy of complex molecular systems. It is based on iteratively ‘filling’ the potential energy of the system by a sum of Gaussians centred along the trajectory followed by a suitably chosen set of collective variables (CVs), thereby forcing the system to migrate from one minimum to the next. The power of metadynamics is demonstrated by the large number of extensions and variants that have been developed. The first scope of this Technical Review is to present a critical comparison of these variants, discussing their advantages and disadvantages. The effectiveness of metadynamics, and that of the numerous alternative methods, is strongly influenced by the choice of the CVs. If an important variable is neglected, the resulting estimate of the free energy is unreliable, and predicted transition mechanisms may be qualitatively wrong. The second scope of this Technical Review is to discuss how the CVs should be selected, how to verify whether the chosen CVs are sufficient or redundant, and how to iteratively improve the CVs using machine learning approaches.

Key points

  • Metadynamics makes it possible to accelerate conformational transitions between metastable states, broadening the scope of molecular dynamics simulations.

  • Like other enhanced sampling methods, metadynamics requires the introduction of low-dimensional descriptors (collective variables) whose choice affects the rate at which transitions are enhanced. The ideal collective variable should take different values not only in all the relevant metastable states but also in the transition states between them.

  • The appropriate collective variables can be found by trial and error or designed automatically using methods inspired by machine learning.

  • Two variants of metadynamics are commonly used, namely ordinary and well-tempered metadynamics. The former has the advantage of inducing transitions between the metastable states even if the collective variable is not ideal. The latter has the advantage of providing an exact estimator of the free energy.

  • Metadynamics can be used in combination with most molecular dynamics software packages by taking advantage of dedicated software libraries that implement the method and a large number of collective variables.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The working principles of adaptive umbrella sampling and metadynamics.
Fig. 2: Three potential energy landscapes, the corresponding free energies and metadynamics trajectories.
Fig. 3: Three approaches for automatically finding the best CV.
Fig. 4: Typical architecture of a library to perform metadynamics simulations.
Fig. 5: Choosing the correct metadynamics variant.

Similar content being viewed by others

References

  1. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    ADS  Google Scholar 

  2. Laio, A. & Parrinello, M. Escaping free energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    ADS  Google Scholar 

  3. Laio, A. & Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71, 126601 (2008).

    ADS  Google Scholar 

  4. Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 826–843 (2011).

    Google Scholar 

  5. Sutto, L., Marsili, S. & Gervasio, F. L. New advances in metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 771–779 (2012).

    Google Scholar 

  6. Baftizadeh, F., Cossio, P., Pietrucci, F. & A, L. Protein folding and ligand–enzyme binding from bias-exchange metadynamics simulations. Curr. Phys. Chem. 2, 79–91 (2012).

    Google Scholar 

  7. Bussi, G. & Branduardi, D. Free-energy calculations with metadynamics: theory and practice. Rev. Comput. Chem. 28, 1–49 (2015).

    Google Scholar 

  8. Valsson, O., Tiwary, P. & Parrinello, M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016).

    ADS  Google Scholar 

  9. Theodoropoulos, C., Qian, Y.-H. & Kevrekidis, I. G. Coarse stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc. Natl Acad. Sci. USA 97, 9840–9843 (2000).

    ADS  MATH  Google Scholar 

  10. Grubmüller, H. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52, 2893–2906 (1995).

    ADS  Google Scholar 

  11. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986).

    MathSciNet  MATH  Google Scholar 

  12. Cvijović, D. & Klinowski, J. Taboo search — an approach to the multiple minima problem. Science 267, 664–666 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  13. Huber, T., Torda, A. E. & Van Gunsteren, W. F. Local elevation: a method for improving the searching properties of molecular dynamics simulation. J. Comput. Aided Mol. Des. 8, 695–708 (1994).

    ADS  Google Scholar 

  14. Wang, F. & Landau, D. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050 (2001).

    ADS  Google Scholar 

  15. Mezei, M. Adaptive umbrella sampling: self-consistent determination of the non-Boltzmann bias. J. Comput. Phys. 68, 237–248 (1987).

    ADS  MathSciNet  MATH  Google Scholar 

  16. Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).

    MathSciNet  MATH  Google Scholar 

  17. Bussi, G., Laio, A. & Parrinello, M. Equilibrium free energies from nonequilibrium metadynamics. Phys. Rev. Lett. 96, 090601 (2006).

    ADS  Google Scholar 

  18. Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    ADS  Google Scholar 

  19. Spall, J. C. Introduction to Stochastic Search and Optimization (Wiley, 2003).

  20. Dama, J. F., Parrinello, M. & Voth, G. A. Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112, 240602 (2014).

    ADS  Google Scholar 

  21. Piana, S. & Laio, A. A bias-exchange approach to protein folding. J. Phys. Chem. B 111, 4553–4559 (2007).

    Google Scholar 

  22. Gil-Ley, A. & Bussi, G. Enhanced conformational sampling using replica exchange with collective-variable tempering. J. Chem. Theory Comput. 11, 1077–1085 (2014).

    Google Scholar 

  23. Pfaendtner, J. & Bonomi, M. Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J. Chem. Theory Comput. 11, 5062–5067 (2015).

    Google Scholar 

  24. Branduardi, D., Gervasio, F. L. & Parrinello, M. From A to B in free energy space. J. Chem. Phys. 126, 054103 (2007).

    ADS  Google Scholar 

  25. Leines, G. D. & Ensing, B. Path finding on high-dimensional free energy landscapes. Phys. Rev. Lett. 109, 020601 (2012).

    Google Scholar 

  26. Awasthi, S., Kapil, V. & Nair, N. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics. J. Comp. Chem. 37, 1413–1424 (2016).

    Google Scholar 

  27. Marinelli, F. Following easy slope paths on a free energy landscape: the case study of the Trp-cage folding mechanism. Biophys. J. 105, 1236–1247 (2013).

    ADS  Google Scholar 

  28. Hošek, P., Toulcová, D., Bortolato, A. & Spiwok, V. Altruistic metadynamics: multisystem biased simulation. J. Phys. Chem. B 120, 2209–2215 (2016).

    Google Scholar 

  29. Fu, H. et al. Zooming across the free-energy landscape: shaving barriers, and flooding valleys. J. Phys. Chem. Lett. 9, 4738–4745 (2018).

    Google Scholar 

  30. Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183 (2001).

    ADS  Google Scholar 

  31. Limongelli, V., Bonomi, M. & Parrinello, M. Funnel metadynamics as accurate binding free-energy method. Proc. Natl Acad. Sci. USA 110, 6358–6363 (2013).

    ADS  Google Scholar 

  32. Bonomi, M., Barducci, A. & Parrinello, M. Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J. Comput. Chem. 30, 1615–1621 (2009).

    Google Scholar 

  33. Branduardi, D., Bussi, G. & Parrinello, M. Metadynamics with adaptive Gaussians. J. Chem. Theory Comput. 8, 2247–2254 (2012).

    Google Scholar 

  34. Tiwary, P. & Parrinello, M. A time-independent free energy estimator for metadynamics. J. Phys. Chem. B 119, 736–742 (2014).

    Google Scholar 

  35. Donati, L. & Keller, B. G. Girsanov reweighting for metadynamics simulations. J. Chem. Phys. 149, 072335 (2018).

    ADS  Google Scholar 

  36. Iannuzzi, M., Laio, A. & Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 90, 238302 (2003).

    ADS  Google Scholar 

  37. Crespo, Y., Marinelli, F., Pietrucci, F. & Laio, A. Metadynamics convergence law in a multidimensional system. Phys. Rev. E 81, 055701 (2010).

    ADS  Google Scholar 

  38. Spiwok, V. & Králová, B. Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. J. Chem. Phys. 135, 224504 (2011).

    ADS  Google Scholar 

  39. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    ADS  Google Scholar 

  40. Cox, T. F. & Cox, M. A. Multidimensional Scaling (Chapman and Hall/CRC, 2000).

  41. Rohrdanz, M. A., Zheng, W., Maggioni, M. & Clementi, C. Determination of reaction coordinates via locally scaled diffusion map. J. Chem. Phys. 134, 124116 (2011).

    ADS  Google Scholar 

  42. Tribello, G. A., Ceriotti, M. & Parrinello, M. Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc. Natl Acad. Sci. USA 109, 5196–5201 (2012).

    ADS  Google Scholar 

  43. Sultan, M. M. & Pande, V. S. Automated design of collective variables using supervised machine learning. J. Chem. Phys. 149, 094106 (2018).

    ADS  Google Scholar 

  44. Mendels, D., Piccini, G., Brotzakis, Z. F., Yang, Y. I. & Parrinello, M. Folding a small protein using harmonic linear discriminant analysis. J. Chem. Phys. 149, 194113 (2018).

    ADS  Google Scholar 

  45. Piccini, G. & Parrinello, M. Accurate quantum chemical free energies at affordable cost. J. Phys. Chem. Lett. 10, 3727–3731 (2019).

    Google Scholar 

  46. Rizzi, V., Mendels, D., Sicilia, E. & Parrinello, M. Blind search for complex chemical pathways using harmonic linear discriminant analysis. J. Chem. Theory Comput. 15, 4507–4515 (2019).

    Google Scholar 

  47. Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010).

    Google Scholar 

  48. Peters, B., Beckham, G. T. & Trout, B. L. Extensions to the likelihood maximization approach for finding reaction coordinates. J. Chem. Phys. 127, 034109 (2007).

    ADS  Google Scholar 

  49. Tiwary, P. & Berne, B. Spectral gap optimization of order parameters for sampling complex molecular systems. Proc. Natl Acad. Sci. USA 113, 2839–2844 (2016).

    ADS  Google Scholar 

  50. M Sultan, M. & Pande, V. S. tICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J. Chem. Theory Comput. 13, 2440–2447 (2017).

    Google Scholar 

  51. McCarty, J. & Parrinello, M. A variational conformational dynamics approach to the selection of collective variables in metadynamics. J. Chem. Phys. 147, 204109 (2017).

    ADS  Google Scholar 

  52. Piccini, G., Polino, D. & Parrinello, M. Identifying slow molecular motions in complex chemical reactions. J. Phys. Chem. Lett. 8, 4197–4200 (2017).

    Google Scholar 

  53. Chen, W. & Ferguson, A. L. Molecular enhanced sampling with autoencoders: on-the-fly collective variable discovery and accelerated free energy landscape exploration. J. Comput. Chem. 39, 2079–2102 (2018).

    Google Scholar 

  54. Wehmeyer, C. & Noé, F. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148, 241703 (2018).

    ADS  Google Scholar 

  55. Wang, Y., Ribeiro, J. M. L. & Tiwary, P. Past–future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics. Nat. Commun. 10, 3573 (2019).

    ADS  Google Scholar 

  56. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED2: new feathers for an old bird. Comput. Phys. Comm. 185, 604–613 (2014).

    ADS  Google Scholar 

  57. Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

    ADS  Google Scholar 

  58. Sidky, H. et al. SSAGES: software suite for advanced general ensemble simulations. J. Chem. Phys. 148, 044104 (2018).

    ADS  Google Scholar 

  59. Grubmüller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271, 997–999 (1996).

    ADS  Google Scholar 

  60. The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019).

    Google Scholar 

  61. Dama, J., Rotskoff, G., Parrinello, M. & Voth, G. Transition-tempered metadynamics: robust, convergent metadynamics via on-the-fly transition barrier estimation. J. Chem. Theory Comput. 10, 3626–3633 (2014).

    Google Scholar 

  62. Jourdain, B., Lelièvre, T. & Zitt, P.-A. Convergence of metadynamics: discussion of the adiabatic hypothesis. Preprint at arXix https://arxiv.org/abs/1904.08667 (2019).

  63. Cuendet, M. & Tuckerman, M. Free energy reconstruction from metadynamics or adiabatic free energy dynamics simulations. J. Chem. Theory Comput. 10, 2975–2986 (2014).

    Google Scholar 

  64. Mones, L., Bernstein, N. & Csányi, G. Exploration, sampling, and reconstruction of free energy surfaces with Gaussian process regression. J. Chem. Theory Comput. 12, 5100–5110 (2016).

    Google Scholar 

  65. Bussi, G., Gervasio, F. L., Laio, A. & Parrinello, M. Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128, 13435–13441 (2006).

    Google Scholar 

  66. Camilloni, C., Provasi, D., Tiana, G. & Broglia, R. A. Exploring the protein G helix free-energy surface by solute tempering metadynamics. Proteins 71, 1647–1654 (2008).

    Google Scholar 

  67. McGovern, M. & De Pablo, J. A boundary correction algorithm for metadynamics in multiple dimensions. J. Chem. Phys. 140, 229901 (2013).

    ADS  Google Scholar 

  68. Harvey, M. J., Giupponi, G. & Fabritiis, G. D. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2009).

    Google Scholar 

  69. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Google Scholar 

  70. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Google Scholar 

  71. Todorov, I. T., Smith, W., Trachenko, K. & Dove, M. T. Dl_poly_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911–1918 (2006).

    Google Scholar 

  72. Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. in Proc. 2006 ACM/IEEE Conf. Supercomput. 43–43 (IEEE, 2006).

  73. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    ADS  Google Scholar 

  74. Kapil, V. et al. i-PI 2.0: a universal force engine for advanced molecular simulations. Comput. Phys. Commun. 236, 214–223 (2019).

    ADS  Google Scholar 

  75. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

    ADS  MATH  Google Scholar 

  76. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  MATH  Google Scholar 

  77. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Google Scholar 

  78. Louden, P. et al. OPENMD-2.5: molecular dynamics in the open. OpenMD http://openmd.org/ (2017).

  79. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Google Scholar 

  80. Procacci, P. Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations. J. Chem. Inf. Model. 56, 1117–1121 (2016).

    Google Scholar 

  81. Tuckerman, M. E., Yarne, D., Samuelson, S. O., Hughes, A. L. & Martyna, G. J. Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comput. Phys. Commun. 128, 333–376 (2000).

    ADS  MATH  Google Scholar 

  82. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  83. Gygi, F. Architecture of Qbox: a scalable first-principles molecular dynamics code. IBM J. Res. Dev. 52, 137–144 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of manuscript preparation, revision and editing.

Corresponding author

Correspondence to Alessandro Laio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussi, G., Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat Rev Phys 2, 200–212 (2020). https://doi.org/10.1038/s42254-020-0153-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-0153-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing