Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organosodium compounds for catalytic cross-coupling

Abstract

Sodium is the most abundant alkali metal in the Earth’s crust and the ocean. However, organosodium compounds have long been considered inferior to organolithium compounds, which have instead dominated synthetic organic chemistry during the last century. Despite being largely neglected because of their reactive nature, it is worth re-exploring organosodium chemistry, in light of the growing demand for sustainable syntheses without recourse to less abundant elements such as lithium. Herein, we demonstrate that, contrary to common belief, organosodium compounds can be easily prepared from aryl chlorides or (hetero)arenes and easy-to-handle sodium dispersion and, after being transmetallated to the corresponding zinc and boron compounds, they readily participate in the Negishi and Suzuki–Miyaura cross-coupling reactions, fundamental carbon–carbon bond-forming reactions in organic synthesis. Direct coupling reactions with organosodium species were also possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of organometallic compounds and the subsequent cross-coupling reactions.
Fig. 2: Preparation of arylsodiums from aryl chlorides and sodium dispersion.
Fig. 3: Palladium-catalysed Negishi cross-coupling reactions using arylsodiums.
Fig. 4: Palladium-catalysed Suzuki–Miyaura cross-coupling reactions using arylsodiums.
Fig. 5: Palladium-catalysed direct cross-coupling reactions using arylsodiums.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Seyferth, D. Alkyl and aryl derivatives of the alkali metals: useful synthetic reagents as strong bases and potent nucleophiles. 1. Conversion of organic halides to organoalkali-metal compounds. Organometallics 25, 2–24 (2006).

    Article  CAS  Google Scholar 

  2. Seyferth, D. Alkyl and aryl derivatives of the alkali metals: strong bases and reactive nucleophiles. 2. Wilhelm Schlenkas organoalkali-metal chemistry. The metal displacement and the transmetalation reactions. Metalation of weakly acidic hydrocarbons. Superbases. Organometallics 28, 2–33 (2009).

    Article  CAS  Google Scholar 

  3. Schlosser, M. (ed.) Organometallics in Synthesis: A Manual 2nd edn (Wiley, Chichester, 2002).

  4. Nobis, J. F., Moormeier, L. F. & Robinson, R. E. Organosodium compounds for preparation of other carbon–metal bonds. Adv. Chem. Ser. 23, 63–68 (1959).

    Article  CAS  Google Scholar 

  5. Bockmühl, M. & Ehrhart, G. Sodium phenyl and its derivatives and process of preparing them. Reichspatent 622,875 (1935) and US patent 2,012,372 (1935).

  6. Gilman, H. & Wright, G. F. The mechanism of the Wurtz–Fittig reaction. The direct preparation of an organosodium (potassium) compound from an RX compound. J. Am. Chem. Soc. 55, 2893–2896 (1933).

    Article  CAS  Google Scholar 

  7. Benkeser, R. A., Foster, D. J., Sauve, D. M. & Nobis, J. F. Metalations with organosodium compounds. Chem. Rev. 57, 867–894 (1957).

    Article  CAS  Google Scholar 

  8. Schlosser, M. Organosodium and organopotassium compounds. Part I: Properties and reactions. Angew. Chem. Int. Ed. 3, 287–306 (1964).

    Article  Google Scholar 

  9. Schlosser, M. Organosodium and organopotassium compounds. Part II: Preparation and synthetic applications. Angew. Chem. Int. Ed. 3, 362–373 (1964).

    Article  Google Scholar 

  10. Gissot, A. et al. Directed ortho-metalation, a new insight into organosodium chemistry. Angew. Chem. Int. Ed. 41, 340–343 (2002).

    Article  CAS  Google Scholar 

  11. Ma, Y., Algera, R. F. & Collum, D. B. Sodium diisopropylamide in N,N-dimethylethylamine: reactivity, selectivity, and synthetic utility. J. Org. Chem. 81, 11312–11315 (2016).

    Article  CAS  Google Scholar 

  12. Huang, Y., Chan, G. H. & Chiba, S. Amide-directed C–H sodiation by a sodium hydride/iodide composite. Angew. Chem. Int. Ed. 56, 6544–6547 (2017).

    Article  CAS  Google Scholar 

  13. Weidmann, N., Ketels, M. & Knochel, P. Sodiation of arenes and heteroarenes in continuous flow. Angew. Chem. Int. Ed. 57, 10748–10751 (2018).

    Article  CAS  Google Scholar 

  14. The Nobel Prize in Chemistry 2010. The Nobel Prize. https://www.nobelprize.org/prizes/chemistry/2010/summary/ (2010).

  15. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  16. de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More Vols 1, 2 and 3 (Wiley-VCH, Weinheim, 2014).

  17. Negishi, E. Magical power of transition metals: past, present, and future. Angew. Chem. Int. Ed. 50, 6738–6764 (2011).

    Article  CAS  Google Scholar 

  18. Krasovskiy, A. & Knochel, P. A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. Angew. Chem. Int. Ed. 43, 3333–3336 (2004).

    Article  CAS  Google Scholar 

  19. Nakamura, E. & Sato, K. Managing the scarcity of chemical elements. Nat. Mater. 10, 158–161 (2011).

    Article  CAS  Google Scholar 

  20. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  Google Scholar 

  21. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    Article  CAS  Google Scholar 

  22. Nobis, J. F. & Moormeier, L. F. Phenylsodium route to phenylacetic acid and dimethyl phenylmalonate. Ind. Eng. Chem. 46, 539–544 (1954).

    Article  CAS  Google Scholar 

  23. Screttas, C. G., Steele, B. R., Micha-Screttas, M. & Heropoulos, G. A. Aryllithiums with increasing steric crowding and lipophilicity prepared from chlorides in diethyl ether. The first directly prepared room-temperature-stable dilithioarenes. Org. Lett. 14, 5680–5683 (2012).

    Article  CAS  Google Scholar 

  24. Valente, C. et al. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    Article  CAS  Google Scholar 

  25. Kawamorita, S., Ohmiya, H., Iwai, T. & Sawamura, M. Palladium-catalyzed borylation of sterically demanding aryl halides with a silica-supported compact phosphane ligand. Angew. Chem. Int. Ed. 50, 8363–8366 (2011).

    Article  CAS  Google Scholar 

  26. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  27. Giannerini, M., Fañanás-Mastral, M. & Feringa, B. L. Direct catalytic cross-coupling of organolithium compounds. Nat. Chem. 5, 667–672 (2013).

    Article  CAS  Google Scholar 

  28. Pinxterhuis, E. B., Giannerini, M., Hornillos, V. & Feringa, B. L. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat. Commun. 7, 11698 (2016).

    Article  Google Scholar 

  29. Jia, Z., Liu, Q., Peng, X.-S. & Wong, H. N. C. Iron-catalysed cross-coupling of organolithium compounds with organic halides. Nat. Commun. 7, 10614 (2016).

    Article  Google Scholar 

  30. Leiendecker, M., Hsiao, C.-C., Guo, L., Alandini, N. & Rueping, M. Metal-catalyzed dealkoxylative Caryl–Csp3 cross-coupling—replacement of aromatic methoxy groups of aryl ethers by employing a functionalized nucleophile. Angew. Chem. Int. Ed. 53, 12912–12915 (2014).

    Article  CAS  Google Scholar 

  31. Yang, Z.-K. et al. Cross-coupling of organolithium with ethers or aryl ammonium salts by C–O or C–N bond cleavage. Chem. Eur. J. 22, 15693–15699 (2016).

    Article  CAS  Google Scholar 

  32. Giannerini, M., Hornillos, V., Vila, C., Fañanás-Mastral, M. & Feringa, B. L. Hindered aryllithium reagents as partners in palladium-catalyzed cross-coupling: synthesis of tri- and tetra-ortho-substituted biaryls under ambient conditions. Angew. Chem. Int. Ed. 52, 13329–13333 (2013).

    Article  CAS  Google Scholar 

  33. Hornillos, V., Giannerini, M., Vila, C., Fañanás-Mastral, M. & Feringa, B. L. Catalytic direct cross-coupling of organolithium compounds with aryl chlorides. Org. Lett. 15, 5114–5117 (2013).

    Article  CAS  Google Scholar 

  34. Ehrhart, G. Über umsetzungen mit phenylnatrium. Chem. Ber. 96, 2042–2046 (1963).

    Article  CAS  Google Scholar 

  35. Becht, J.-M., Gissot, A., Wagner, A. & Mioskowski, C. An efficient synthesis of biaryls via noncatalysed anionic coupling of an arylsodium with haloarenes. Tetrahedron Lett. 45, 9331–9333 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Okayama University and KOBELCO ECO-Solutions Co., Ltd for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and K.T. conceived and designed the experiments. H.N. performed the experiments. S.A. and K.T. prepared the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Sobi Asako or Kazuhiko Takai.

Ethics declarations

Competing interests

S.A. and K.T. are listed as inventors on patent applications (JP2017/247538, JP2018/005719, JP2018/099899) that cover the cross-coupling reactions presented in this paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–4, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asako, S., Nakajima, H. & Takai, K. Organosodium compounds for catalytic cross-coupling. Nat Catal 2, 297–303 (2019). https://doi.org/10.1038/s41929-019-0250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0250-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing