Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre

An Author Correction to this article was published on 14 November 2022

This article has been updated

Abstract

Two-dimensional semiconductors such as layered transition metal dichalcogenides can offer superior immunity to short-channel effects compared with bulk semiconductors such as silicon. As a result, these materials can be used to create highly scaled transistors. However, on-state current densities of two-dimensional semiconductor transistors are still below those of silicon transistors. Here we show that bilayer tungsten diselenide transistors that have channel lengths of less than 100 nm can exhibit on-state current densities above 1.0 mA μm−1 and on-state resistances below 1.0 kΩ μm at room temperature. The devices have atomically clean van der Waals vanadium diselenide contacts and are created using van der Waals epitaxy and controlled crack formation processes. With a 20-nm-long and 1.3-nm-thick transistor, an on-state current density of 1.72 mA μm−1 and on-state resistance of 0.50 kΩ μm are achieved, showing comparable performance to silicon transistors with similar channel lengths and driving voltages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of sub-100-nm bilayer WSe2 transistors with VSe2 vdW contacts.
Fig. 2: Electron microscopy characterizations of the sub-100-nm bilayer WSe2 transistors.
Fig. 3: Electrical characteristics of sub-100-nm bilayer WSe2 transistors.
Fig. 4: Benchmarking sub-100-nm bilayer WSe2 transistors against other targets for 2D semiconductor transistors and 2021 silicon transistors reported in ITRS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  Google Scholar 

  2. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  Google Scholar 

  3. Huang, J. K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2014).

    Article  Google Scholar 

  4. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    Article  Google Scholar 

  5. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  Google Scholar 

  6. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  7. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  Google Scholar 

  8. Liu, Y. et al. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    Article  Google Scholar 

  9. Vu, Q. A. et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 5, 0310013 (2018).

    Article  Google Scholar 

  10. Lee, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  11. Li, M.-Y., Su, S.-K., Wong, H.-S. P. & Li, L.-J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Article  Google Scholar 

  12. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  Google Scholar 

  13. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  Google Scholar 

  14. Sakaki, H. et al. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phy. Lett. 51, 1934–1936 (1987).

    Article  Google Scholar 

  15. Poljak, M. et al. Assessment of electron mobility in ultrathin-body InGaAs-on-insulator MOSFETs using physics-based modeling. IEEE Trans. Electron Devices 59, 1636–1643 (2012).

    Article  Google Scholar 

  16. Jena, D. Tunneling transistors based on graphene and 2D crystals. Proc. IEEE 101, 1585–1602 (2013).

    Article  Google Scholar 

  17. Liu, H., Neal, A. T. & Ye, P. D. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  Google Scholar 

  18. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  Google Scholar 

  19. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  Google Scholar 

  20. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  Google Scholar 

  21. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  Google Scholar 

  22. Zhang, X. et al. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 11, 12777–12785 (2019).

    Article  Google Scholar 

  23. Cao, W., Kang, J., Liu, W. & Banerjee, K. A compact current–voltage model for 2D semiconductor-based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 61, 4282–4290 (2014).

    Article  Google Scholar 

  24. Collaert, N. Device architectures for the 5nm technology node and beyond. Semicon, Taiwan (2016). https://bjpcjp.github.io/pdfs/chips/SEMICON_Taiwan_2016_collaert.pdf

  25. Huyghebaert, C. et al. 2D materials: roadmap to CMOS integration. In 2018 IEEE International Electron Devices Meeting (IEDM) 22.1.1−22.1.4 (IEEE, 2018).

  26. Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Article  Google Scholar 

  27. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  28. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).

    Article  Google Scholar 

  29. Perera, M. M. et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013).

    Article  Google Scholar 

  30. Chang, H. Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    Article  Google Scholar 

  31. Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).

    Article  Google Scholar 

  32. Chuang, H. J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    Article  Google Scholar 

  33. LaGasse, S. W. et al. Gate‐tunable graphene–WSe2 heterojunctions at the Schottky–Mott limit. Adv. Mater. 31, 190139224 (2019).

    Google Scholar 

  34. Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250µA/µm drain current. In 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.1–23.2.4 (IEEE, 2019).

  35. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  Google Scholar 

  36. Radu, I. 2D materials in the logic roadmap: 5 good reasons and 3 major challenges. https://www.edn.com/2d-materials-in-the-logic-roadmap-5-good-reasons-and-3-major-challenges/ (2021).

  37. Xia, J. L. et al. Effect of top dielectric medium on gate capacitance of graphene field effect transistors: implications in mobility measurements and sensor applications. Nano Lett. 10, 105060–105064 (2010).

    Article  Google Scholar 

  38. Fuhrer, M. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013).

    Article  Google Scholar 

  39. Nasr, J. R. et al. Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31, 1806020 (2019).

    Article  Google Scholar 

  40. Ueng, H. J., Janes, D. B. & Webb, K. J. Error analysis leading to design criteria for transmission line model characterization of ohmic contacts. IEEE Trans. Electron Devices 48, 758–766 (2001).

    Article  Google Scholar 

  41. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article  Google Scholar 

  42. Smithe, K. et al. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  Google Scholar 

  43. Mookerjea, S. et al. Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56, 2092–2098 (2009).

    Article  Google Scholar 

  44. Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).

    Article  Google Scholar 

  45. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  Google Scholar 

  46. Mack, C. A. Field Guide to Optical Lithography Vol. 6 (SPIE Press, 2006).

  47. Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

    Article  Google Scholar 

  48. Yang, Y., Gu, C. & Li, J. Sub‐5 nm metal nanogaps: physical properties, fabrication methods, and device applications. Small 15, 1804177 (2019).

    Article  Google Scholar 

  49. McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  Google Scholar 

  50. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  Google Scholar 

  51. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  Google Scholar 

  52. Zhang, Z. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci. Rev. 7, 737–744 (2020).

    Article  Google Scholar 

  53. Wiegers, G. A. The characterization of VSe2: a study of the thermal expansion. J. Phys. C: Solid State Phys. 14, 4225 (1981).

    Article  Google Scholar 

  54. Ahn, G. H. et al. Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017).

    Article  Google Scholar 

  55. Tada, H. et al. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J. Appl. Phys. 87, 4189–4193 (2000).

    Article  Google Scholar 

  56. Zhou, H. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015).

    Article  Google Scholar 

  57. Zhang, Z. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra‐high electrical conductivity. Adv. Mater. 29, 17023592017 (2017).

    Article  Google Scholar 

  58. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Article  Google Scholar 

  59. Kumar, A. & Ahluwalia, P. K. Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te): effect of quantum confinement. Phys. B 407, 4627–4634 (2012).

    Article  Google Scholar 

  60. Semiconductor, V. The general properties of Si, Ge, SiGe, SiO2 and Si3N4. (2002). https://www.virginiasemi.com

  61. Sun, X. et al. Performance limit of monolayer WSe2 transistors; significantly outperform their MoS2 counterpart. ACS Appl. Mater. Interfaces 12, 20633–20644 (2020).

    Article  Google Scholar 

  62. Li, X. et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5, eaau3194 (2019).

    Article  Google Scholar 

  63. Zhong, M. et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv. Funct. Mater. 28, 1802581 (2018).

    Article  Google Scholar 

  64. Yuan, S. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018).

    Article  Google Scholar 

  65. Liu, Y. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    Article  Google Scholar 

  66. Chou, A. et al. High on-current 2D nFET of 390 µA/µm at VDS = 1V using monolayer CVD MoS2 without intentional doping. In 2020 IEEE Symposium on VLSI Technology 1–2 (IEEE, 2020).

  67. Pang, C.-S., Wu, P., Appenzeller, J. & Chen, Z. Sub-1nm EOT WS2-FET with IDS > 600μA/μm at VDS=1V and SS < 70mV/dec at LG=40nm. In 2020 IEEE International Electron Devices Meeting (IEDM) 3.4.1−3.4.4 (IEEE, 2020).

  68. Iqbal, M. W. et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

    Article  Google Scholar 

  69. He, Q. et al. Molecular beam epitaxy scalable growth of wafer‐scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv. Mater. 31, 1901578 (2019).

    Article  Google Scholar 

  70. Guo, J. et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv. Mater. 30, 1705934 (2018).

    Article  Google Scholar 

  71. Huang, Y.-T. et al. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces 10, 33450–33456 (2018).

    Article  Google Scholar 

  72. Yang, S. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11, 554–564 (2018).

    Article  Google Scholar 

  73. Shim, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28, 6985–6992 (2016).

    Article  Google Scholar 

  74. Yang, S. et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226–7231 (2014).

    Article  Google Scholar 

  75. Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).

    Article  Google Scholar 

  76. Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Article  Google Scholar 

  77. The International Technology Roadmap for Semiconductors. http://www.itrs2.net/itrs-reports.html

  78. Sebastian, A. et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  Google Scholar 

  79. Baliga, J. in Modern Power Devices 148–149 (Wiley, 1987).

  80. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  81. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors at Hunan University acknowledge support from the National Key Research and Development Program of China (grant no. 2018YFE0202700), National Natural Science Foundation of China (nos. 51802090, 51872086, 51991343, 51991341, 51991340 and 61874041), the Hunan Key Laboratory of Two-Dimensional Materials (grant no. 2018TP1010) and the Innovative Research Groups of Hunan Province (grant no. 2020JJ1001).

Author information

Authors and Affiliations

Authors

Contributions

Xidong Duan conceived the research. R.W. developed a lithography-free approach to sub-100-nm channel lengths and measured all the devices. Q.T., W.L., Y.C., Z.S., H.D. and L.L. performed the device fabrication. J.L. participated in the investigation of the crack formation mechanism. J.L., H.M. and B.Z. participated in materials growth as well as TEM and HAADF-STEM characterizations. R.W., Q.T., Z.Z., X.Y., B.L. and Y.L. contributed to the discussions and data analysis. Xidong Duan supervised the research. R.W., Xidong Duan and Xiangfeng Duan co-wrote the manuscript with inputs from all the authors. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xidong Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jing Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The Raman and PL spectrum of the VSe2/WSe2.

a, b Raman spectrum and PL spectrum obtained from the measurement area on both sides of the crack of VSe2/WSe2, respectively.

Extended Data Fig. 2 Electron microscopy characterizations of the sub-100 nm bilayer WSe2 transistors.

a, The SAED pattern of the bare WSe2. b, The SAED pattern collected from the overlapping VSe2/WSe2 region shows two sets of electron diffraction patterns, corresponding to WSe2 and VSe2, respectively. The insets in (a, b) show a magnified view of a selected area electron diffraction spot. The diffraction spots from the overlapping VSe2/WSe2 area shows two sets of identically orientated diffraction spots with the inner and outer set corresponding to the 1T-VSe2 and 2H-WSe2. (c) HAADF-STEM image taken on the bare WSe2 region with a lattice constant of 3.29 Å for of WSe2. (d) HAADF-STEM image taken on the VSe2 region show a lattice constant of 3.36 Å for VSe2. Scale bars: a, b 2 nm−1; c, d 2 nm.

Extended Data Fig. 3 Energy dispersive spectroscopy (EDS) elemental mapping image.

The distribution of the entire element mapping image of the cross-sectional image of (VSe2/WSe2)–WSe2–(VSe2/WSe2) device supported on the 70 nm SiNx substrate. Scale bar: 20 nm.

Extended Data Fig. 4 Electrical characterizations of 10 sub-100 nm WSe2 devices.

a1 - j2, The output and transfer curves of 10 sub-100 nm WSe2 devices at room temperature. The Vgs varies with a 5 V step in the output curves.

Extended Data Fig. 5 Electrical characteristics of the sub-100 nm monolayer WSe2 transistors.

a, Output characteristics of the 72-nm-length monolayer WSe2 transistors at various back-gate voltages with a step of 5 V. The inset shows the SEM image of the monolayer WSe2 transistor with 72 nm channel length. Scale bars: 100 nm. b, Transfer curves of the 72-nm-length monolayer WSe2 transistor at various bias voltages.

Extended Data Fig. 6 Top-gated ultra-short channel bilayer WSe2 transistor.

a, SEM image of the top-gated bilayer WSe2 transistor with ~3 nm Al2O3/6 nm HfO2 as top-gate dielectrics. The length and width of the WSe2 transistor are 80 nm and 6.0 μm. The scale of inset is 5 μm. b, Transfer curves of the 80-nm-length transistor at various bias voltages when Vbg is fixed at −30 V. c, Output characteristics of the 80-nm-length WSe2 transistor at various top-gate voltages with a step of 1 V.

Extended Data Fig. 7 Ultrashort WSe2 channel array with VSe2 contacts generated by synthesis of WSe2/VSe2 vdW heterostructure array and following controlled crack formation process.

a, The OM images of 1 × 6 ultrashort channels of WSe2 array with VSe2 synthetic contacts. b-f, The corresponding SEM images of a. Scale bars: 1 μm.

Extended Data Table 1 Comparison of the key electrical properties of 2D semiconductor transistors with Si transistors projected in the International Technology Roadmap for Semiconductors (ITRS). NA, not available; b-P, black phosphorus; b-As, black arsenic; b-AsP, black arsenic phosphorus

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Tao, Q., Li, J. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat Electron 5, 497–504 (2022). https://doi.org/10.1038/s41928-022-00800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00800-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing