Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Computational methods for single-cell omics across modalities

Single-cell omics approaches provide high-resolution data on cellular phenotypes, developmental dynamics and communication networks in diverse tissues and conditions. Emerging technologies now measure different modalities of individual cells, such as genomes, epigenomes, transcriptomes and proteomes, in addition to spatial profiling. Combined with analytical approaches, these data open new avenues for accurate reconstruction of gene-regulatory and signaling networks driving cellular identity and function. Here we summarize computational methods for analysis and integration of single-cell omics data across different modalities and discuss their applications, challenges and future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Stuart, T. et al. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  Google Scholar 

  2. Welch, J. D. et al. Cell 177, 1873–1887.e17 (2019).

    Article  CAS  Google Scholar 

  3. Lopez, R. et al. A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements. Preprint at arXiv https://arxiv.org/abs/1905.02269 (2019).

  4. Kester, L. & van Oudenaarden, A. Cell Stem Cell 23, 166–179 (2018).

    Article  CAS  Google Scholar 

  5. Ludwig, L. S. et al. Cell 176, 1325–1339.e22 (2019).

    Article  CAS  Google Scholar 

  6. Xu, J. et al. eLife 8, e45105 (2019).

    Article  Google Scholar 

  7. McCarthy, D. J. et al. Cardelino: integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants. Preprint at bioRxiv https://doi.org/10.1101/413047 (2018).

  8. Satpathy, A. T. et al. Nat. Med. 24, 580–590 (2018).

    Article  CAS  Google Scholar 

  9. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Preprint at bioRxiv https://doi.org/10.1101/630996 (2018).

  10. Aibar, S. et al. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  Google Scholar 

  11. Hainer, S. J., Bošković, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Cell 177, 1319–1329.e11 (2019).

    Article  CAS  Google Scholar 

  12. Welch, J. D., Hartemink, A. J. & Prins, J. F. Genome Biol. 18, 138 (2017).

    Article  Google Scholar 

  13. Burdziak, C., Azizi, E., Prabhakaran, S. & Pe’er, D. A nonparametric multi-view model for estimating cell type-specific gene regulatory networks. Preprint at arXiv https://arxiv.org/abs/1902.08138 (2019).

  14. Henriksson, J. Single Cell Methods.: Methods. Mol. Biol. 1979, 395–406 (2019).

    Article  CAS  Google Scholar 

  15. Krishnaswamy, S. et al. Science 346, 1250689 (2014).

    Article  Google Scholar 

  16. Qin, X. et al. Single-cell signalling analysis of heterocellular organoids. Preprint at bioRxiv https://doi.org/10.1101/659896 (2019).

  17. Stoeckius, M. et al. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  18. Peterson, V. M. et al. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  Google Scholar 

  19. Gayoso, A. et al. A joint model of RNA expression and surface protein abundance in single cells. Preprint at bioRxiv https://doi.org/10.1101/791947 (2019).

  20. Markowetz, F., Kostka, D., Troyanskaya, O. G. & Spang, R. Bioinformatics 23, i305–i312 (2007).

    Article  CAS  Google Scholar 

  21. Pirkl, M. & Beerenwinkel, N. Bioinformatics 34, i964–i971 (2018).

    Article  CAS  Google Scholar 

  22. Mayr, U., Serra, D. & Liberali, P. Development 146, dev176727 (2019).

    Article  CAS  Google Scholar 

  23. Halpern, K. B. et al. Nature 542, 352–356 (2017).

    Article  CAS  Google Scholar 

  24. Karaiskos, N. et al. The Drosophila embryo at single cell transcriptome resolution. Science 358, 194–199 (2017).

    Article  CAS  Google Scholar 

  25. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  Google Scholar 

  26. Achim, K. et al. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  Google Scholar 

  27. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB v2.0: inferring cell-cell communication from combined expression of multi-subunit receptor-ligand complexes. Preprint at bioRxiv https://doi.org/10.1101/680926 (2019).

  28. Colomé-Tatché, M. & Theis, F. J. Curr. Opin. Syst. Biol. 7, 54–59 (2018).

    Article  Google Scholar 

  29. Packer, J. & Trapnell, C. Trends Genet. 34, 653–665 (2018).

    Article  CAS  Google Scholar 

  30. Argelaguet, R. et al. MOFA: a probabilistic framework for comprehensive integration of structured single-cell data. Preprint at bioRxiv https://doi.org/10.1101/837104 (2019).

Download references

Acknowledgements

We thank E. Dann and M. Sarkin Jain for careful and critical reading of the manuscript. We are grateful to J. Eliasova for help with the illustrations.

Author information

Authors and Affiliations

Authors

Contributions

M.E and S.A.T wrote the manuscript.

Corresponding author

Correspondence to Sarah A. Teichmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, M., Teichmann, S.A. Computational methods for single-cell omics across modalities. Nat Methods 17, 14–17 (2020). https://doi.org/10.1038/s41592-019-0692-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0692-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing