Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acoustic tweezers for the life sciences

Abstract

Acoustic tweezers are a versatile set of tools that use sound waves to manipulate bioparticles ranging from nanometer-sized extracellular vesicles to millimeter-sized multicellular organisms. Over the past several decades, the capabilities of acoustic tweezers have expanded from simplistic particle trapping to precise rotation and translation of cells and organisms in three dimensions. Recent advances have led to reconfigured acoustic tweezers that are capable of separating, enriching, and patterning bioparticles in complex solutions. Here, we review the history and fundamentals of acoustic-tweezer technology and summarize recent breakthroughs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations of various acoustic-tweezer technologies.
Fig. 2: Acoustic manipulation of various sample sizes and types.
Fig. 3: Acoustic manipulation of single particles and droplets.
Fig. 4: Acoustic isolation of exosomes from whole blood30.
Fig. 5: Acoustic-based 2D single-cell patterning42.

Similar content being viewed by others

References

  1. Hooke, R. Micrographia (Royal Society of London, London, 1665).

    Google Scholar 

  2. Ericsson, M., Hanstorp, D., Hagberg, P., Enger, J. & Nyström, T. Sorting out bacterial viability with optical tweezers. J. Bacteriol. 182, 5551–5555 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perkins, T. T. Optical traps for single molecule biophysics: a primer. Laser Photonics Rev. 3, 203–220 (2009).

    Article  CAS  Google Scholar 

  5. Khandurina, J. & Guttman, A. Bioanalysis in microfluidic devices. J. Chromatogr. A 943, 159–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, J. R. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1521 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H. & Liu, K.-K. Optical tweezers for single cells. J. R. Soc. Interface 5, 671–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rasmussen, M. B., Oddershede, L. B. & Siegumfeldt, H. Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl. Environ. Microbiol. 74, 2441–2446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leitz, G., Fällman, E., Tuck, S. & Axner, O. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys. J. 82, 2224–2231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bausch, A. R., Möller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, M. C. Optoelectronic tweezers. Nat. Photonics 5, 322–324 (2011).

    Article  CAS  Google Scholar 

  14. Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Probst, R. & Shapiro, B. Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms. J. Micromech. Microeng. 21, 027004 (2011).

    Article  Google Scholar 

  16. Cohen, A. E. & Moerner, W. E. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 86, 93109 (2005).

    Article  CAS  Google Scholar 

  17. Lutz, B. R., Chen, J. & Schwartz, D. T. Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78, 5429–5435 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J. et al. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 6, 35814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Destgeer, G. & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15, 2722–2738 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

    Article  Google Scholar 

  22. Carovac, A., Smajlovic, F. & Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med. 19, 168–171 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ng, K. H. International guidelines and regulations for the safe use of diagnostic ultrasound in medicine. J. Med. Ultrasound 10, 5–9 (2002).

    Article  Google Scholar 

  24. Wiklund, M. Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Lam, K. H. et al. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci. Rep. 6, 37554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sundvik, M., Nieminen, H. J., Salmi, A., Panula, P. & Hæggström, E. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos. Sci. Rep. 5, 13596 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shapira, I. et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br. J. Cancer 110, 976–983 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Joyce, D. P., Kerin, M. J. & Dwyer, R. M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer 139, 1443–1448 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Plaks, V., Koopman, C. D. & Werb, Z. Circulating tumor cells. Science 341, 1186–1188 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 114, 10584–10589 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA 112, 4970–4975 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 113, 1522–1527 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Guo, F. et al. Controlling cell-cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA 112, 43–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Epstein, H. F. & Shakes, D. C. Caenorhabditis elegans: Modern Biological Analysis of an Organism Vol. 48. (Academic Press, Cambridge, MA, USA, 1995).

  36. Ahmed, D. et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bruus, H. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12, 20–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Lenshof, A., Evander, M., Laurell, T. & Nilsson, J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12, 684–695 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Luong, T.-D. & Nguyen, N.-T. Surface acoustic wave driven microfluidics: a review. Micro Nanosyst. 2, 217–225 (2010).

    Article  Google Scholar 

  40. Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Augustsson, P., Karlsen, J. T., Su, H.-W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 8661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foresti, D. & Poulikakos, D. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. Phys. Rev. Lett. 112, 024301 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Démoré, C. E. M. et al. Acoustic tractor beam. Phys. Rev. Lett. 112, 174302 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  Google Scholar 

  48. Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sadhal, S. S. Acoustofluidics 16: acoustics streaming near liquid-gas interfaces: drops and bubbles. Lab Chip 12, 2771–2781 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Sadhal, S. S. Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12, 2292–2300 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. ter Haar, G. & Wyard, S. J. Blood cell banding in ultrasonic standing wave fields: a physical analysis. Ultrasound Med. Biol. 4, 111–123 (1978).

    Article  PubMed  Google Scholar 

  52. Hashmi, A., Yu, G., Reilly-Collette, M., Heiman, G. & Xu, J. Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12, 4216–4227 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, P.-H. et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14, 4319–4323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phan, H. V. et al. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab Chip 15, 4206–4216 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, P.-H. et al. An acoustofluidic sputum liquefier. Lab Chip 15, 3125–3131 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Yeo, L. Y. & Friend, J. R. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3, 12002 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

    Article  Google Scholar 

  58. Destgeer, G. et al. Travelling surface acoustic waves microfluidics. Phys. Procedia 70, 34–37 (2015).

    Article  CAS  Google Scholar 

  59. Galanzha, E. I. et al. In vivo acoustic and photoacoustic focusing of circulating cells. Sci. Rep. 6, 21531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmid, L., Weitz, D. A. & Franke, T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14, 3710–3718 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Ren, L. et al. A high-throughput acoustic cell sorter. Lab Chip 15, 3870–3879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, S. et al. Standing surface acoustic wave based cell coculture. Anal. Chem. 86, 9853–9859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reboud, J. et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Bernard, I. et al. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. Lab Chip 17, 2470–2480 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Hahn, P., Lamprecht, A. & Dual, J. Numerical simulation of micro-particle rotation by the acoustic viscous torque. Lab Chip 16, 4581–4594 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Vasileiou, T., Foresti, D., Bayram, A., Poulikakos, D. & Ferrari, A. Toward contactless biology: acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A. & Poulikakos, D. Acoustophoretic contactless transport and handling of matter in air. Proc. Natl. Acad. Sci. USA 110, 12549–12554 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Collins, D. J., Ma, Z., Han, J. & Ai, Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 17, 91–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 109, 11105–11109 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Y. et al. High-throughput acoustic separation of platelets from whole blood. Lab Chip 16, 3466–3472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Destgeer, G. et al. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip 16, 660–667 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Marmottant, P. & Hilgenfeldt, S. A bubble-driven microfluidic transport element for bioengineering. Proc. Natl. Acad. Sci. USA 101, 9523–9527 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tovar, A. R., Patel, M. V. & Lee, A. P. Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid. Nanofluidics 10, 1269–1278 (2011).

    Article  CAS  Google Scholar 

  74. Rogers, P. R., Friend, J. R. & Yeo, L. Y. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab Chip 10, 2979–2985 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, S. P. et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nat. Commun. 9, 2928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsujino, S. & Tomizaki, T. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Sci. Rep. 6, 25558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaiser, J. ‘Liquid biopsy’ for cancer promises early detection. Science 359, 259–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Hao, T. B. et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer 111, 1482–1489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Kamsma, D., Creyghton, R., Sitters, G., Wuite, G. J. L. & Peterman, E. J. G. Tuning the music: acoustic force spectroscopy (AFS) 2.0. Methods 105, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01 HD086325, R01 AI120560, and R33CA223908) and National Science Foundation (ECCS-1807601) to T.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Jun Huang.

Ethics declarations

Competing interests

T.J.H. has four US patents (patent nos. 8,573,060; 9,608,547; 9,606,086; and 9,757,699) related to acoustic tweezers. He also cofounded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustic tweezers.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcelik, A., Rufo, J., Guo, F. et al. Acoustic tweezers for the life sciences. Nat Methods 15, 1021–1028 (2018). https://doi.org/10.1038/s41592-018-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-018-0222-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing