Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adaptation and memory in immune responses

Abstract

Adaptation is the ability of cells, tissues and organisms to rapidly and reversibly modify their properties to maximize fitness in a changing environment. The activity of immune-system components unfolds in the remarkably heterogeneous milieus to which they are exposed in different tissues, during homeostasis or during various acute or chronic pathological states. Therefore, adaptation is essential for immune cells to tune their responses to a large variety of contexts and conditions. The adaptation of immune cells reflects the integration of multiple inputs acting simultaneously or in a temporal sequence, which eventually leads to transcriptional reprogramming and to various functional consequences, some of which extend beyond the duration of the stimulus. A range of adaptive responses have been observed in both adaptive immune cells and innate immune cells; these are referred to with terms such as ‘plasticity’, ‘priming’, ‘training’, ‘exhaustion’ and ‘tolerance’, among others, all of which can be useful for defining a certain immunological process or outcome but whose underlying molecular frameworks are often incompletely understood. Here we review and analyze mechanisms of adaptation and memory in immunity with the aim of providing basic concepts that rationalize the properties and molecular bases of these essential processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discriminative properties of adaptation and memory in the immune system.
Fig. 2: Different outputs of immunological adaptations dictated by the properties of the eliciting stimulus.
Fig. 3: Signal-response and signal-integration models of macrophage activation.
Fig. 4: Chromatin control of signal integration in macrophages exposed to synergistic or antagonistic stimuli.

Similar content being viewed by others

References

  1. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Monticelli, S. DNA (hydroxy)methylation in T helper lymphocytes. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2019.01.009 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Monticelli, S. & Natoli, G. Short-term memory of danger signals and environmental stimuli in immune cells. Nat. Immunol. 14, 777–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Seeley, J. J. & Ghosh, S. Molecular mechanisms of innate memory and tolerance to LPS. J. Leukoc. Biol. 101, 107–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, J. C., Ugolini, S. & Vivier, E. Immunological memory within the innate immune system. EMBO J. 33, 1295–1303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Sullivan, T. E., Sun, J. C. & Lanier, L. L. Natural killer cell memory. Immunity 43, 634–645 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol. 8, 11–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Monticelli, S. & Natoli, G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat. Rev. Immunol. 17, 595–607 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mancino, A. et al. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 29, 394–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gautier, E. L. et al. Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J. Exp. Med. 211, 1525–1531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344, 645–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott, C. L. et al. The transcription factor ZEB2 is required to maintain the tissue-specific identities of macrophages. Immunity 49, 312–325.e315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8, 717 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kayama, H. et al. Heme ameliorates dextran sodium sulfate-induced colitis through providing intestinal macrophages with noninflammatory profiles. Proc. Natl Acad. Sci. USA 115, 8418–8423 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mackay, L. K. & Kallies, A. Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 38, 94–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Ditadi, A., Sturgeon, C. M. & Keller, G. A view of human haematopoietic development from the Petri dish. Nat. Rev. Mol. Cell Biol. 18, 56–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Gentek, R. et al. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48, 1160–1171.e1165 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Li, Z. et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49, 640–653.e645 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, F. L. & Baumgarth, N. B-1 cell responses to infections. Curr. Opin. Immunol. 57, 23–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gentek, R. et al. Epidermal γ δ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J. Exp. Med. 215, 2994–3005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, N. L. et al. Developmental origin governs CD8+ T cell fate decisions during infection. Cell 174, 117–130.e114 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Shemer, A. et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun. 9, 5206 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cronk, J. C. et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215, 1627–1647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 597 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pope, S. D. & Medzhitov, R. Emerging Principles of Gene Expression Programs and Their Regulation. Mol. Cell 71, 389–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Smale, S. T., Tarakhovsky, A. & Natoli, G. Chromatin contributions to the regulation of innate immunity. Annu. Rev. Immunol. 32, 489–511 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kamada, R. et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc. Natl Acad. Sci. USA 115, E9162–E9171 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Daniel, B. et al. The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity 49, 615–626.e616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McLane, L.M., Abdel-Hakeem, M.S. & Wherry, E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, J. & Ivashkiv, L. B. IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc. Natl Acad. Sci. USA 107, 19438–19443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368.e1314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burrill, D. R. & Silver, P. A. Making cellular memories. Cell 140, 13–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ptashne, M. Regulation of transcription: from lambda to eukaryotes. Trends Biochem. Sci. 30, 275–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Seeley, J. J. et al. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature 559, 114–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kraushaar, D. C. et al. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol. 14, R121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Stone, B.A. Chemistry of β-glucans. in Chemistry, Biochemistry, and Biology of 1→3-β-Glucans and Related Polysaccharides (eds. Bacic, A. et al.) Ch. 2.1 (Academic Press, 2009).

  80. Williams, D. L. Overview of (1→3)-β-D-glucan immunobiology. Mediators Inflamm. 6, 247–250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ariizumi, K. et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 275, 20157–20167 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Palma, A. S. et al. Ligands for the β-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281, 5771–5779 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Nono, I., Ohno, N., Masuda, A., Oikawa, S. & Yadomae, T. Oxidative degradation of an antitumor (1→3)-β-D-glucan, grifolan. J. Pharmacobiodyn. 14, 9–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Ozment, T. R., Goldman, M. P., Kalbfleisch, J. H. & Williams, D. L. Soluble glucan is internalized and trafficked to the Golgi apparatus in macrophages via a clathrin-mediated, lipid raft-regulated mechanism. J. Pharmacol. Exp. Ther. 342, 808–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miura, T., Ohno, N., Miura, N. N., Shimada, S. & Yadomae, T. Inactivation of a particle β-glucan by proteins in plasma and serum. Biol. Pharm. Bull. 20, 1103–1107 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Miura, T. et al. Inactivation of (1→3)-β-D-glucan in mice. Biol. Pharm. Bull. 18, 1797–1801 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, K. et al. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine 2, 324–333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lira, F. S. et al. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis. 9, 82 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Szeto, C. C. et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 3, 431–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wiedermann, C. J. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J. Am. Coll. Cardiol. 34, 1975–1981 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Olsen, A. W., Brandt, L., Agger, E. M., van Pinxteren, L. A. & Andersen, P. The influence of remaining live BCG organisms in vaccinated mice on the maintenance of immunity to tuberculosis. Scand. J. Immunol. 60, 273–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kaveh, D. A., Garcia-Pelayo, M. C. & Hogarth, P. J. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine 32, 6911–6918 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Queiroz, A. & Riley, L. W. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Rev. Soc. Bras. Med. Trop. 50, 9–18 (2017).

    Article  PubMed  Google Scholar 

  95. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saccani, S., Pantano, S. & Natoli, G. Two waves of nuclear factor kB recruitment to target promoters. J. Exp. Med. 193, 1351–1359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Czimmerer, Z. et al. The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity 48, 75–90.e76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kang, K. et al. Interferon-γ represses m2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47, 235–250.e234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Piccolo, V. et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18, 530–540 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schleicher, U. et al. TNF-mediated restriction of arginase 1 expression in myeloid cells triggers type 2 NO synthase activity at the site of infection. Cell Rep. 15, 1062–1075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nelson, V. L. et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32, 1035–1044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Qiao, Y., Kang, K., Giannopoulou, E., Fang, C. & Ivashkiv, L. B. IFN-γ induces histone 3 lysine 27 trimethylation in a small subset of promoters to stably silence gene expression in human macrophages. Cell Rep. 16, 3121–3129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ezenwa, V. O. & Jolles, A. E. Epidemiology. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Osborne, L. C. et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rückerl, D. et al. Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLoS Pathog. 13, e1006233 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kratochvill, F. et al. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 12, 1902–1914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harrison, O.J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).

    Article  PubMed  CAS  Google Scholar 

  113. Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the G.N. and R.O. laboratories for scientific discussions and to S. Monticelli for critical reading of the manuscript. Research on related topics in the G.N. laboratory is supported by the European Research Council (ERC Advanced Grant 692789, MEDICI), the European Commission (Consortium grant SYSCYD), the Cariplo Foundation and the Italian Ministry of University and Research (MIUR, grant METRIC (METabolic Regulation of Inflammatory Cells). Research in the R.O. laboratory is supported by grants from the European Research Council (ERC Starting Grant 759532, X-TAM), the Italian Telethon Foundation (SR-Tiget grant award F04), the Italian Ministry of Health (GR-2016-02362156), the Associazione Italiana per la Ricerca sul Cancro (AIRC MFAG, 20247), the Cariplo Foundation (2015–0990) and the European Union (Infect-ERA 126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gioacchino Natoli or Renato Ostuni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natoli, G., Ostuni, R. Adaptation and memory in immune responses. Nat Immunol 20, 783–792 (2019). https://doi.org/10.1038/s41590-019-0399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0399-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing