Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Understanding the language of drugged plants

Plant biologists have recognized the potential in using small molecules identified from chemical libraries to provide insights into biological questions relevant to plants. However, the classical genetics mindset still predominant among plant scientists should evolve to embrace cross-disciplinary chemical genetics projects that will benefit future plant research.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Balance between classical genetics and chemical genetics for probing mechanisms in plant biology.
Fig. 2: Conventional and current trends in plant chemical genetics.
Fig. 3: Plant chemical genetics will benefit from cross-disciplinary approaches.

References

  1. Dejonghe, W. & Russinova, E. Plant Physiol. 174, 5–20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hicks, G. R. & Raikhel, N. V. Front. Plant Sci. 5, 455 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bucci, M., Goodman, C. & Sheppard, T. L. Nat. Chem. Biol. 6, 847–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Park, S.-Y. et al. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Drakakaki, G. et al. Proc. Natl. Acad. Sci. USA 108, 17850–17855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halder, V., Suliman, M. N. S., Kaschani, F. & Kaiser, M. Sci. Rep. 9, 11196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. He, W. et al. Plant Cell 23, 3944–3960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsuchiya, Y. et al. Nat. Chem. Biol. 6, 741–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Meesters, C. et al. Nat. Chem. Biol. 10, 830–836 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. De Rybel, B. et al. Chem. Biol. 16, 594–604 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bektas, Y. & Eulgem, T. Front. Plant Sci. 5, 804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brabham, C. & Debolt, S. Front. Plant Sci. 3, 309 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoneda, A. et al. Plant Cell Physiol. 48, 1393–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Shinohara, H. et al. Commun. Biol. 2, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takaoka, Y. et al. Nat. Commun. 9, 3654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsuchiya, Y. et al. Science 349, 864–868 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Uchida, N. et al. Nat. Chem. Biol. 14, 299–305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dejonghe, W. & Russinova, E. Front. Plant Sci. 5, 352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C. et al. Proc. Natl. Acad. Sci. USA 113, E41–E50 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Mishev, K. et al. Plant Cell 30, 2573–2593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dejonghe, W. et al. Nat. Chem. Biol. 15, 641–649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uehara, T. N. et al. Proc. Natl. Acad. Sci. USA 116, 11528–11536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mallapaty, S. Nature 552, S5 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Meiners, T., Stechmann, B. & Frank, R. J. Chem. Biol. 7, 113–118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Papanatsiou, M. et al. Science 363, 1456–1459 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Raikhel, G.R. Hicks, T. Beeckman, M. Kaiser, D. Audenaert, W. Dejonghe and K. Mishev for critical reading and valuable suggestions, and M. De Cock for help in preparing the manuscript. This work was supported by the Research Foundation-Flanders (project 3G009018 to E.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Russinova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, V., Russinova, E. Understanding the language of drugged plants. Nat Chem Biol 15, 1025–1028 (2019). https://doi.org/10.1038/s41589-019-0389-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0389-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing