Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Galectins as potential therapeutic targets in STIs in the female genital tract

Abstract

Every day, more than one million people worldwide acquire a sexually transmitted infection (STI). This public health problem has a direct effect on women’s reproductive and sexual health as STIs can cause irreversible damage to fertility and can have negative consequences associated with discrimination and social exclusion. Infection with one sexually transmitted pathogen predisposes to co-infection with others, suggesting the existence of shared pathways that serve as molecular links between these diseases. Galectins, a family of β-galactoside-binding proteins, have emerged as endogenous mediators that facilitate cell-surface binding, internalization and cell invasion of many sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Candida albicans, HIV and herpes simplex virus. The ability of certain galectins to dimerize or form multimeric complexes confers the capacity to interact simultaneously with glycosylated ligands on both the pathogen and the cervico-vaginal tissue on these proteins. Galectins can act as a bridge by engaging glycans from the pathogen surface and glycosylated receptors from host cells, which is a mechanism that has been shown to be shared by several sexually transmitted pathogens. In the case of viruses and obligate intracellular bacteria, binding to the cell surface promotes pathogen internalization and cell invasion. Inflammatory responses that occur in cervico-vaginal tissue might trigger secretion of galectins, which in turn control the establishment, evolution and severity of STIs. Thus, galectin-targeted therapies could potentially prevent or decrease STIs caused by a diverse array of pathogenic microorganisms; furthermore, anti-galectin agents might reduce treatment costs of STIs and reach the most vulnerable populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical and histological structure of the female genital tract, different epithelia and associated microbiota.
Fig. 2: Role of galectins in host–pathogen interactions in sexually transmitted infections in the female genital tract.
Fig. 3: Alterations of the female genital tract might promote the development of sexually transmitted infections via galectin-dependent mechanisms.

Similar content being viewed by others

References

  1. WHO. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. Accountability for the global health sector strategies 2016–2021: actions for impact (WHO, 2021). This WHO report provides data about the effect, strategies, progress, actions and remaining challenges to achieving effective intervention in STIs and universal health coverage.

  2. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2019 (2021).

  3. Logie, C. H. et al. HIV-related stigma, racial discrimination, and gender discrimination: pathways to physical and mental health-related quality of life among a national cohort of women living with HIV. Prev. Med. 107, 36–44 (2018).

    PubMed  Google Scholar 

  4. Amin, A. Addressing gender inequalities to improve the sexual and reproductive health and wellbeing of women living with HIV. J. Int. AIDS Soc. 18, 20302 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Chesson, H. W. et al. The estimated direct lifetime medical costs of sexually transmitted infections acquired in the United States in 2018. Sex. Transm. Dis. 48, 215–221 (2021).

    PubMed  Google Scholar 

  6. Minichiello, V., Rahman, S. & Hussain, R. Epidemiology of sexually transmitted infections in global indigenous populations: data availability and gaps. Int. J. STD AIDS 24, 759–768 (2013).

    PubMed  Google Scholar 

  7. Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Cole, M. J. et al. Substantial under diagnosis of lymphogranuloma venereum in men who have sex with men in Europe: preliminary findings from a multicentre surveillance pilot. Sex. Transm. Infect. 96, 137–142 (2020).

    PubMed  Google Scholar 

  9. Zhou, X. et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150, 2565–2573 (2004).

    CAS  PubMed  Google Scholar 

  10. Farage, M. A. & Maibach, H. I. Morphology and physiological changes of genital skin and mucosa. Curr. Probl. Dermatol. 40, 9–19 (2011).

    CAS  PubMed  Google Scholar 

  11. Petrova, M. I., Lievens, E., Malik, S., Imholz, N. & Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol. 6, 1–18 (2015).

    Google Scholar 

  12. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Pruski, P. et al. Assessment of microbiota:host interactions at the vaginal mucosa interface. Methods 149, 74–84 (2018).

    CAS  PubMed  Google Scholar 

  14. Lacroix, G., Gouyer, V., Gottrand, F. & Desseyn, J. L. The cervico vaginal mucus barrier. Int. J. Mol. Sci. 21, 1–23 (2020).

    Google Scholar 

  15. Vasta, G. R. Roles of galectins in infection. Nat. Rev. Microbiol. 7, 424–438 (2009). This review provides an overview of the role of galectins in host–pathogen interactions, immune recognition and subversion of immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vasta, G. R. et al. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front. Immunol. 3, 1–14 (2012).

    Google Scholar 

  17. Blidner, A. G. & Rabinovich, G. A. ‘Sweetening’ pregnancy: galectins at the fetomaternal interface. Am. J. Reprod. Immunol. 69, 369–382 (2013).

    CAS  PubMed  Google Scholar 

  18. Wira, C. R., Fahey, J. V., Sentman, C. L., Pioli, P. A. & Shen, L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev. 206, 306–335 (2005).

    PubMed  Google Scholar 

  19. Andersch-Björkman, Y., Thomsson, K. A., Holmén Larsson, J. M., Ekerhovd, E. & Hansson, G. C. Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteom. 6, 708–716 (2007).

    Google Scholar 

  20. Macklaim, J. M., Gloor, G. B., Anukam, K. C., Cribby, S. & Reid, G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc. Natl Acad. Sci. USA 108, 4688–4695 (2011).

    CAS  PubMed  Google Scholar 

  21. O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, 1–8 (2013).

    Google Scholar 

  22. Wira, C. R., Rodriguez-Garcia, M. & Patel, M. V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15, 217–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722 (2016).

    CAS  PubMed  Google Scholar 

  24. Mirmonsef, P. et al. Glycogen levels in undiluted genital fluid and their relationship to vaginal pH, estrogen, and progesterone. PLoS ONE 11, 1–10 (2016).

    Google Scholar 

  25. Pudney, J., Quayle, A. J. & Anderson, D. J. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod. 73, 1253–1263 (2005).

    CAS  PubMed  Google Scholar 

  26. Hwang, L. Y., Scott, M. E., Ma, Y. & Moscicki, A.-B. Higher levels of cervicovaginal inflammatory and regulatory cytokines and chemokines in healthy young women with immature cervical epithelium. J. Reprod. Immunol. 88, 66–71 (2011).

    CAS  PubMed  Google Scholar 

  27. Punchard, N. A., Whelan, C. J. & Adcock, I. The journal of inflammation. J. Inflamm. 1, 1 (2004).

    Google Scholar 

  28. Allavena, P., Garlanda, C., Borrello, M. G., Sica, A. & Mantovani, A. Pathways connecting inflammation and cancer. Curr. Opin. Genet. Dev. 18, 3–10 (2008).

    CAS  PubMed  Google Scholar 

  29. Forcey, D. S. et al. Chlamydia detection during the menstrual cycle: a cross-sectional study of women attending a sexual health service. PLoS ONE 9, e85263 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. von Wolff, M., Wang, X., Gabius, H. J. & Strowitzki, T. Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation. Mol. Hum. Reprod. 11, 189–194 (2005).

    Google Scholar 

  31. Nio-Kobayashi, J. Histological mapping and subtype-specific functions of galectins in health and disease. Trends Glycosci. Glycotechnol. 30, E89–SE96 (2018). This review summarizes current knowledge on the cellular and tissue localization of different members of the galectin family, including regulation of galectin expression within the female genital tract.

    Google Scholar 

  32. Lujan, A. L. et al. Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection. Proc. Natl Acad. Sci. USA 115, E6000–E6009 (2018). This study demonstrates, using in vitro and in vivo approaches, the role of Gal-1 in modulating C. trachomatis invasion of cervical epithelial cells by bridging bacterial glycans and N-glycosylated host cell receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dromer, F. et al. Synthetic analogues of beta-1,2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother. 46, 3869–3876 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Colomb, F., Giron, L., Trbojevic-Akmacic, I., Lauc, G. & Abdel-Mohsen, M. Breaking the glyco-code of HIV persistence and immunopathogenesis. Curr. HIV/AIDS Rep. 16, 151–168 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Varki, A. et al. Essentials of Glycobiology 3rd edn (Cold Spring Harbor Laboratory Press, 2017).

  36. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johannes, L., Jacob, R. &Leffler, H. Galectins at a glance. J. Cell Sci.131, (2018).

  38. Vasta, G. R. Galectins in host–pathogen interactions: structural, functional and evolutionary aspects. Adv. Exp. Med. Biol. 1204, 169–196 (2020).

    CAS  PubMed  Google Scholar 

  39. Rabinovich, G. A., van Kooyk, Y. & Cobb, B. A. Glycobiology of immune responses. Ann. N. Y. Acad. Sci. 1253, 1–15 (2012).

    CAS  PubMed  Google Scholar 

  40. Thiemann, S. & Baum, L. G. Galectins and immune responses-just how do they do those things they do? Annu. Rev. Immunol. 34, 243–264 (2016). This article summarizes the essential role of galectins in innate and adaptive immune responses.

    CAS  PubMed  Google Scholar 

  41. Cerliani, J. P., Blidner, A. G., Toscano, M. A., Croci, D. O. & Rabinovich, G. A. Translating the ‘sugar code’ into immune and vascular signaling programs. Trends Biochem. Sci. 42, 255–273 (2017).

    CAS  PubMed  Google Scholar 

  42. Maller, S. M. et al. An adipose tissue galectin controls endothelial cell function via preferential recognition of 3-fucosylated glycans. FASEB J. 34, 735–753 (2020).

    CAS  PubMed  Google Scholar 

  43. Vasta, G. R. In Current topics in innate immunity II. Adv. Exp. Med. Biol. 946, 21–36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Popa, S. J., Stewart, S. E. & Moreau, K. Unconventional secretion of annexins and galectins. Semin. Cell Dev. Biol. 83, 42–50 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Russo, A. et al. Intracellular immune sensing promotes inflammation via gasdermin D-driven release of a lectin alarmin. Nat. Immunol. 22, 154–165 (2021). This study summarizes an emerging mechanism of Gal-1 secretion upon intracellular lipopolysaccharide sensing involving non-canonical inflammasome activation and induction of pyroptotic or necroptotic cell death.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Martínez-Bosch, N. et al. Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities. Nat. Rev. Urol. 16, 433–445 (2019).

    PubMed  Google Scholar 

  47. Dennis, J. W., Nabi, I. R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–1241 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Croci, D. O. et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156, 744–758 (2014).

    CAS  PubMed  Google Scholar 

  49. Girotti, M. R., Salatino, M., Dalotto-Moreno, T. & Rabinovich, G. A. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J. Exp. Med. 217, e20182041 (2020).

    PubMed  Google Scholar 

  50. Liu, F.-T., Yang, R.-Y. & Hsu, D. K. Galectins in acute and chronic inflammation. Ann. N. Y. Acad. Sci. 1253, 80–91 (2012).

    CAS  PubMed  Google Scholar 

  51. Nabi, I. R., Shankar, J. & Dennis, J. W. The galectin lattice at a glance. J. Cell Sci. 128, 2213–2219 (2015).

    CAS  PubMed  Google Scholar 

  52. Hong, M. H. et al. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. J. Biomed. Sci. 28, 16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Davicino, R. C. et al. Galectin-1-driven tolerogenic programs aggravate Yersinia enterocolitica infection by repressing antibacterial immunity. J. Immunol. 199, 1382–1392 (2017).

    CAS  PubMed  Google Scholar 

  54. Mubaiwa, T. D. et al. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog. Dis. 75, 1–9 (2017).

    Google Scholar 

  55. John, C. M. et al. Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell. Microbiol. 4, 649–662 (2002). This study reports the role of endogenous Gal-3 in binding bacterial lipo-oligosaccharides from Neisseria gonorrhoeae.

    CAS  PubMed  Google Scholar 

  56. Fichorova, R. N. et al. Trichomonas vaginalis lipophosphoglycan exploits binding to galectin-1 and -3 to modulate epithelial immunity. J. Biol. Chem. 291, 998–1013 (2016). This paper shows the ability of Gal-1 and Gal-3 to bind and modulate immune responses upon infection with the parasite T. vaginalis.

    CAS  PubMed  Google Scholar 

  57. King, R. D., Lubinski, J. M. & Friedman, H. M. Herpes simplex virus type 1 infection increases the carbohydrate binding activity and the secretion of cellular galectin-3. Arch. Virol. 154, 609–618 (2009).

    CAS  PubMed  Google Scholar 

  58. Woodward, A. M., Mauris, J. & Argueso, P. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. J. Virol. 87, 5841–5847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, S.-F. et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 24, 1022–1035 (2014). This study illustrates the role of endogenous galectin-3 in facilitating HIV-1 budding and infection by promoting the association of ALG-2-interacting protein X (Alix) with viral Gag p6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Esteban, A. et al. Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc. Natl Acad. Sci. USA 108, 14270–14275 (2011). This article reports the cross-talk between the C-type lectin dectin-1 and Gal-3 in regulating recognition and macrophage function in response to fungal infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F.-T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific β-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006).

    CAS  PubMed  Google Scholar 

  62. Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).

    CAS  PubMed  Google Scholar 

  63. Linden, J. R., Kunkel, D., Laforce-Nesbitt, S. S. & Bliss, J. M. The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell. Microbiol. 15, 1127–1142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Linden, J. R., De Paepe, M. E., Laforce-Nesbitt, S. S. & Bliss, J. M. Galectin-3 plays an important role in protection against disseminated candidiasis. Med. Mycol. 51, 641–651 (2013).

    CAS  PubMed  Google Scholar 

  65. Wu, S. Y. et al. Cell intrinsic galectin-3 attenuates neutrophil ROS-dependent killing of Candida by modulating CR3 downstream syk activation. Front. Immunol. 8, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. St-Pierre, C. et al. Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J. Virol. 85, 11742–11751 (2011). This work demonstrates that HIV-1 exploits Gal-1 to enhance gp120–CD4 interactions, thereby promoting virus attachment and infection.

    PubMed  PubMed Central  Google Scholar 

  67. Ouellet, M. et al. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J. Immunol. 174, 4120–4126 (2005).

    CAS  PubMed  Google Scholar 

  68. Gonzalez, M. I. et al. Regulated expression of galectin-1 after in vitro productive infection with herpes simplex virus type 1: implications for T cell apoptosis. Int. J. Immunopathol. Pharmacol. 18, 615–623 (2005).

    CAS  PubMed  Google Scholar 

  69. Rajasagi, N. K. et al. Galectin-1 reduces the severity of herpes simplex virus-induced ocular immunopathological lesions. J. Immunol. 188, 4631–4643 (2012).

    CAS  PubMed  Google Scholar 

  70. Wang, W. H. et al. Amino acid deletions in p6Gag domain of HIV-1 CRF07_BC ameliorate galectin-3 mediated enhancement in viral budding. Int. J. Mol. Sci. 21, 2910 (2020).

    CAS  PubMed Central  Google Scholar 

  71. Bi, S., Hong, P. W., Lee, B. & Baum, L. G. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc. Natl Acad. Sci. USA 108, 10650–10655 (2011). This study highlights a mechanism that regulates cell surface redox status mediated by Gal-9–glycoprotein lattices that regulate distinct T cell functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tandon, R. et al. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers. AIDS Res. Hum. Retroviruses 30, 654–664 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Abdel-Mohsen, M. et al. Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLoS Pathog. 12, 1–28 (2016). This study shows the ability of Gal-9 to revert HIV latency, suggesting its role in controlling HIV transcription and viral production during therapy.

    Google Scholar 

  74. Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis. Bull. World Health Organ. 97, 548–562 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Choe, Y. S. et al. Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation. Mol. Reprod. Dev. 48, 261–266 (1997).

    CAS  PubMed  Google Scholar 

  76. Nio-Kobayashi, J. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat. Sci. Int. 92, 25–36 (2017).

    CAS  PubMed  Google Scholar 

  77. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  78. Fichorova, R. N. Protozoan-viral-bacterial co-infections alter galectin levels and associated immunity mediators in the female genital tract. Front. Cell Infect. Microbiol. 11, 649940 (2021). This article provides clinical and experimental evidence showing dysregulation of galectin networks by co-infections with bacteria, virus, fungi and parasites.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fichorova, R. N. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J. Reprod. Immunol. 83, 185–189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Edwards, T., Burke, P., Smalley, H. & Hobbs, G. Trichomonas vaginalis: clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 42, 406–417 (2016).

    CAS  PubMed  Google Scholar 

  81. Van Gerwen, O. T. & Muzny, C. A. Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000 Res. https://doi.org/10.12688/f1000research.19972.1 (2019).

  82. Bowden, F. J. & Garnett, G. P. Trichomonas vaginalis epidemiology: parameterising and analysing a model of treatment interventions. Sex. Transm. Infect. 76, 248–256 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, L. M., Wang, M., Zangwill, K. & Yeh, S. Trichomonas vaginalis infection in a premature newborn. J. Perinatol. 22, 502–503 (2002).

    PubMed  Google Scholar 

  84. Viikki, M., Pukkala, E., Nieminen, P. & Hakama, M. Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol. 39, 71–75 (2000).

    CAS  PubMed  Google Scholar 

  85. Twu, O. et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc. Natl Acad. Sci. USA 111, 8179–8184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sorvillo, F. & Kerndt, P. Trichomonas vaginalis and amplification of HIV-1 transmission. Lancet 351, 213–214 (1998).

    CAS  PubMed  Google Scholar 

  87. Price, C. M. et al. Prevalence and detection of Trichomonas vaginalis in HIV-infected pregnant women. Sex. Transm. Dis. 45, 332–336 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Kissinger, P. & Adamski, A. Trichomoniasis and HIV interactions: a review. Sex. Transm. Infect. 89, 426–433 (2013).

    PubMed  Google Scholar 

  89. Petrin, D., Delgaty, K., Bhatt, R. & Garber, G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev. 11, 300–317 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bastida-Corcuera, F. D., Okumura, C. Y., Colocoussi, A. & Johnson, P. J. Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot. Cell 4, 1951–1958 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Singh, B. N. et al. Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function. Glycoconj. J. 26, 3–17 (2009).

    CAS  PubMed  Google Scholar 

  92. Okumura, C. Y. M., Baum, L. G. & Johnson, P. J. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell. Microbiol. 10, 2078–2090 (2008). This study reports the regulated expression of Gal-1 by human cervical epithelial cells, its binding to T. vaginalis lipophosphoglycan and its role in enhancing parasite recognition and invasion.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ryan, C. M., Mehlert, A., Richardson, J. M., Ferguson, M. A. J. & Johnson, P. J. Chemical structure of Trichomonas vaginalis surface lipoglycan: a role for short galactose (β1-4/3) N-acetylglucosamine repeats in host cell interaction. J. Biol. Chem. 286, 40494–40508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Menon, S. et al. Human and pathogen factors associated with Chlamydia trachomatis-related infertility in women. Clin. Microbiol. Rev. 28, 969–985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Panzetta, M. E. et al. Ptr/CTL0175 is required for the efficient recovery of Chlamydia trachomatis from stress induced by gamma-interferon. Front. Microbiol. 10, 1–18 (2019).

    Google Scholar 

  97. Zhu, H., Shen, Z., Luo, H., Zhang, W. & Zhu, X. Chlamydia trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine 95, e3077 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Bastidas, R. J., Elwell, C. A., Engel, J. N. & Valdivia, R. H. Chlamydial intracellular survival strategies. Cold Spring Harb. Perspect. Med. 3, a010256 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Damiani, M. T., Tudela, J. G. & Capmany, A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell. Microbiol. https://doi.org/10.1111/cmi.12325 (2014).

    Article  PubMed  Google Scholar 

  100. Tudela, J. G. et al. Rab39a and Rab39b display different intracellular distribution and function in sphingolipids and phospholipids transport. Int. J. Mol. Sci. 20, 1–17 (2019).

    Google Scholar 

  101. Cossé, M. M., Hayward, R. D. & Subtil, A. One face of Chlamydia trachomatis: the infectious elementary body. Curr. Top. Microbiol. Immunol. 412, 35–58 (2016).

    Google Scholar 

  102. Swanson, A. F., Ezekowitz, R. A. B., Lee, A. & Kuo, C. C. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect. Immun. 66, 1607–1612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Taraktchoglou, M., Pacey, A. A., Turnbull, J. E. & Eley, A. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate. Infect. Immun. 69, 968–976 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Menozzi, F. D. et al. Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol. Microbiol. 43, 1379–1386 (2002).

    CAS  PubMed  Google Scholar 

  105. Tiwari, V., Maus, E., Sigar, I. M., Ramsey, K. H. & Shukla, D. Role of heparan sulfate in sexually transmitted infections. Glycobiology 22, 1402–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Beswick, E. J., Travelstead, A. & Cooper, M. D. Comparative studies of glycosaminoglycan involvement in Chlamydia pneumoniae and C. trachomatis invasion of host cells. J. Infect. Dis. 187, 1291–1300 (2003).

    CAS  PubMed  Google Scholar 

  107. Fadel, S. & Eley, A. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J. Med. Microbiol. 57, 1058–1061 (2008).

    CAS  PubMed  Google Scholar 

  108. Elwell, C. A., Ceesay, A., Jung, H. K., Kalman, D. & Engel, J. N. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog. 4, 1–15 (2008).

    Google Scholar 

  109. Kim, J. H., Jiang, S., Elwell, C. A. & Engel, J. N. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog. 7, e1002285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stallmann, S. & Hegemann, J. H. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell. Microbiol. 18, 761–775 (2016).

    CAS  PubMed  Google Scholar 

  111. Messinger, J. E., Nelton, E., Feeney, C. & Gondek, D. C. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors. Front. Cell. Infect. Microbiol. 5, 1–9 (2015).

    Google Scholar 

  112. Benamri, I., Azzouzi, M., Sanak, K., Moussa, A. & Moussa, F. An overview of genes and mutations associated with Chlamydiae species’ resistance to antibiotics. Ann. Clin. Microbiol. Antimicrob. 20, 59 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, J. S., Choi, H. Y., Lee, J. E., Lee, S. H. & Oum, B. S. Gonococcal keratoconjunctivitis in adults. Eye 16, 646–649 (2002).

    CAS  PubMed  Google Scholar 

  114. Danby, C. S. et al. Patterns of extragenital Chlamydia and Gonorrhea in women and men who have sex with men reporting a history of receptive anal intercourse. Sex. Transm. Dis. 43, 105–109 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Lovett, A. & Duncan, J. A. Human immune responses and the natural history of Neisseria gonorrhoeae infection. Front. Immunol. 9, 3187 (2018).

    CAS  PubMed  Google Scholar 

  116. Mayor, M. T., Roett, M. A. & Uduhiri, K. A. Diagnosis and management of gonococcal infections. Am. Fam. Phys. 86, 931–938 (2012).

    Google Scholar 

  117. García-De La Torre, I. & Nava-Zavala, A. Gonococcal and nongonococcal arthritis. Rheum. Dis. Clin. North Am. 35, 63–73 (2009).

    PubMed  Google Scholar 

  118. Ramos, A. et al. Gonococcal endocarditis: a case report and review of the literature. Infection 42, 425–428 (2014).

    PubMed  Google Scholar 

  119. Churchward, C. P., Alany, R. G., Kirk, R. S., Walker, A. J. & Snyder, L. A. S. Prevention of ophthalmianeonatorum caused by Neisseria gonorrhoeae using a fatty acid-based formulation. mBio 8, e00534–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Tuddenham, S. et al. Gonorrhoea and chlamydia in persons with HIV: number needed to screen. Sex. Transm. Infect. 95, 322–327 (2019).

    PubMed  Google Scholar 

  121. Chen, A., Boulton, I. C., Pongoski, J., Cochrane, A. & Gray-Owen, S. D. Induction of HIV-1 long terminal repeat-mediated transcription by Neisseria gonorrhoeae. AIDS 17, 625–628 (2003).

    PubMed  Google Scholar 

  122. Nassif, X., Pujol, C., Morand, P. & Eugène, E. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol. Microbiol. 32, 1124–1132 (1999).

    CAS  PubMed  Google Scholar 

  123. Källström, H. et al. Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46: identification of domains important for bacterial adherence. Cell. Microbiol. 3, 133–143 (2001).

    PubMed  Google Scholar 

  124. Kupsch, E. M., Knepper, B., Kuroki, T., Heuer, I. & Meyer, T. F. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 12, 641–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bauer, F. J., Rudel, T., Stein, M. & Meyer, T. F. Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Mol. Microbiol. 31, 903–913 (1999).

    CAS  PubMed  Google Scholar 

  126. Gray-Owen, S. D., Lorenzen, D. R., Haude, A., Meyer, T. F. & Dehio, C. Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol. Microbiol. 26, 971–980 (1997).

    CAS  PubMed  Google Scholar 

  127. Feavers, I. M. & Maiden, M. C. A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol. Microbiol. 30, 647–656 (1998).

    CAS  PubMed  Google Scholar 

  128. Duensing, T. D. & van Putten, J. P. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect. Immun. 65, 964–970 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. John, C. M., Schneider, H. & Griffiss, J. M. Neisseria gonorrhoeae that infect men have lipooligosaccharides with terminal N-acetyllactosamine repeats. J. Biol. Chem. 274, 1017–1025 (1999).

    CAS  PubMed  Google Scholar 

  130. Song, W., Ma, L., Chen, R. & Stein, D. C. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J. Exp. Med. 191, 949–960 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lenz, J. D. & Dillard, J. P. Pathogenesis of Neisseria gonorrhoeae and the host defense in ascending infections of human fallopian tube. Front. Immunol. 9, 2710 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Willems, H. M. E., Ahmed, S. S., Liu, J., Xu, Z. & Peters, B. M. Vulvovaginal candidiasis: a current understanding and burning questions. J. Fungi 6, 27 (2020).

    Google Scholar 

  133. Ksiezopolska, E. & Gabaldón, T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes (Basel) 9, 461 (2018).

    Google Scholar 

  134. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    PubMed  Google Scholar 

  135. Yano, J. et al. Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms, management and post-treatment outcomes. BMC Women’s. Health 19, 48 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Min, K., Neiman, A. M. & Konopka, J. B. Fungal pathogens: shape-shifting invaders. Trends Microbiol. 28, 922–933 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Looker, K. J. et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS ONE 10, 1–17 (2015).

    CAS  Google Scholar 

  138. WHO. Progress report on HIV, viral hepatitis and sexually transmitted infections, 2019. Accountability for the global healthsector strategies, 2016–2021 (World Health Organization, 2019).

  139. Whitley, R. J. & Roizman, B. Herpes simplex virus infections. Lancet 357, 1513–1518 (2001).

    CAS  PubMed  Google Scholar 

  140. Margolis, T. P., Imai, Y., Yang, L., Vallas, V. & Krause, P. R. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J. Virol. 81, 1872–1878 (2007).

    CAS  PubMed  Google Scholar 

  141. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. The genome sequence of herpes simplex virus type 2. J. Virol. 72, 2010–2021 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Fatahzadeh, M. & Schwartz, R. A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 57, 736–737 (2007).

    Google Scholar 

  143. Ruderfer, D. & Krilov, L. R. Herpes simplex viruses 1 and 2. Pediatr. Rev. 36, 86–90 (2015).

    PubMed  Google Scholar 

  144. Gupta, R., Warren, T. & Wald, A. Genital herpes. Lancet 370, 2127–2137 (2007).

    PubMed  Google Scholar 

  145. Ryder, N., Jin, F., McNulty, A. M., Grulich, A. E. & Donovan, B. Increasing role of herpes simplex virus type 1 in first-episode anogenital herpes in heterosexual women and younger men who have sex with men, 1992–2006. Sex. Transm. Infect. 85, 416–419 (2009).

    CAS  PubMed  Google Scholar 

  146. Corey, L. & Wald, A. Maternal and neonatal herpes simplex virus infections. N. Engl. J. Med. 361, 1376–1385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bradshaw, M. J. & Venkatesan, A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13, 493–508 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kropp, R. Y. et al. Neonatal herpes simplex virus infections in Canada: results of a 3-year national prospective study. Pediatrics 117, 1955–1962 (2006).

    PubMed  Google Scholar 

  149. Kobty, M. Herpes simplex virus: beyond the basics. Neonatal Netw. 34, 279–283 (2015).

    PubMed  Google Scholar 

  150. Tuokko, H., Bloigu, R. & Hukkanen, V. Herpes simplex virus type 1 genital herpes in young women: current trend in Northern Finland. Sex. Transm. Infect. 90, 160 (2014).

    PubMed  Google Scholar 

  151. Roberts, C. M., Pfister, J. R. & Spear, S. J. Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. Sex. Transm. Dis. 30, 797–800 (2003).

    PubMed  Google Scholar 

  152. Johnston, C. & Corey, L. Current concepts for genital herpes simplex virus infection: diagnostics and pathogenesis of genital tract shedding. Clin. Microbiol. Rev. 29, 149–161 (2016).

    CAS  PubMed  Google Scholar 

  153. Mertz, G. J., Benedetti, J., Ashley, R., Selke, S. A. & Corey, L. Risk factors for the sexual transmission of genital herpes. Ann. Intern. Med. 116, 197–202 (1992).

    CAS  PubMed  Google Scholar 

  154. Langenberg, A. G., Corey, L., Ashley, R. L., Leong, W. P. & Straus, S. E. A prospective study of new infections with herpes simplex virus type 1 and type 2. Chiron HSV Vaccine Study Group. N. Engl. J. Med. 341, 1432–1438 (1999).

    CAS  PubMed  Google Scholar 

  155. Corey, L., Wald, A., Celum, C. L. & Quinn, T. C. The effects of herpes simplex virus-2 on HIV-1 acquisition and transmission: a review of two overlapping epidemics. J. Acquir. Immune Defic. Syndr. 35, 435–445 (2004).

    PubMed  Google Scholar 

  156. Freeman, E. E. et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20, 73–83 (2006).

    PubMed  Google Scholar 

  157. Trybala, E. et al. Structural and functional features of the polycationic peptide required for inhibition of herpes simplex virus invasion of cells. Antivir. Res. 62, 125–134 (2004).

    CAS  PubMed  Google Scholar 

  158. Dogra, P. et al. Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS ONE 10, e0126239 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Dey, P. et al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano 12, 6429–6442 (2018).

    CAS  PubMed  Google Scholar 

  160. Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Castro, J. G. & Alcaide, M. L. High rates of STIs in HIV-infected patients attending an STI clinic. South. Med. J. 109, 1–4 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Morace, G. et al. Epidemiological and clinical aspects of mycoses in patients with AIDS-related pathologies. Eur. J. Epidemiol. 6, 398–403 (1990).

    CAS  PubMed  Google Scholar 

  163. Cohen, M. S., Council, O. D. & Chen, J. S. Sexually transmitted infections and HIV in the era of antiretroviral treatment and prevention: the biologic basis for epidemiologic synergy. J. Int. AIDS Soc. 22, e25355 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Merani, S., Chen, W. & Elahi, S. The bitter side of sweet: the role of Galectin-9 in immunopathogenesis of viral infections. Rev. Med. Virol. 25, 175–186 (2015).

    CAS  PubMed  Google Scholar 

  165. Sato, S., Ouellet, M., St-Pierre, C. & Tremblay, M. J. Glycans, galectins, and HIV-1 infection. Ann. N. Y. Acad. Sci. 1253, 133–148 (2012).

    CAS  PubMed  Google Scholar 

  166. Veazey, R. S. et al. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J. Exp. Med. 198, 1551–1562 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Veazey, R. S. et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med. 9, 343–346 (2003).

    CAS  PubMed  Google Scholar 

  168. Veazey, R. S. et al. Protection of rhesus macaques from vaginal infection by vaginally delivered maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor. J. Infect. Dis. 202, 739–744 (2010).

    CAS  PubMed  Google Scholar 

  169. Anahtar, M. N., Gootenberg, D. B., Mitchell, C. M. & Kwon, D. S. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell Host Microbe 23, 159–168 (2018). This article summarizes current knowledge about cervico-vaginal microbiota, its composition and role in the health of the female genital tract. It also discusses the importance of Lactobacillus colonization, vaginal pH and sex hormones in the eradication of pathogenic bacteria.

    CAS  PubMed  Google Scholar 

  170. Rob, F. et al. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae co-infections among patients with newly diagnosed syphilis: a single-centre, cross-sectional study. Cent. Eur. J. Public Health 27, 285–291 (2019).

    PubMed  Google Scholar 

  171. Taha, T. E. et al. Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12, 1699–1706 (1998).

    CAS  PubMed  Google Scholar 

  172. Cherpes, T. L., Meyn, L. A., Krohn, M. A. & Hillier, S. L. Risk factors for infection with herpes simplex virus type 2: role of smoking, douching, uncircumcised males, and vaginal flora. Sex. Transm. Dis. 30, 405–410 (2003).

    PubMed  Google Scholar 

  173. Stowell, S. R. et al. Microbial glycan microarrays define key features of host- microbial interactions. Nat. Chem. Biol. 10, 470–476 (2014). This study presents an integrated microbial glycan microarray technology that enables comprehensive analysis of host–microorganism interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gittens, B. R., Bodkin, J. V., Nourshargh, S., Perretti, M. & Cooper, D. Galectin-3: a positive regulator of leukocyte recruitment in the inflamed microcirculation. J. Immunol. 198, 4458–4469 (2017).

    CAS  PubMed  Google Scholar 

  175. Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014).

    PubMed  Google Scholar 

  176. Dings, R. P. M., Miller, M. C., Griffin, R. J. & Mayo, K. H. Galectins as molecular targets for therapeutic intervention. Int. J. Mol. Sci. 19, 905 (2018).

    PubMed Central  Google Scholar 

  177. Cagnoni, A. J., Pérez Sáez, J. M., Rabinovich, G. A. & Mariño, K. V. Turning-off signaling by siglecs, selectins, and galectins: chemical inhibition of glycan-dependent interactions in cancer. Front. Oncol. 6, 109 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. Pérez Sáez, J. M. et al. Characterization of a neutralizing anti-human galectin-1 monoclonal antibody with angioregulatory and immunomodulatory activities. Angiogenesis 24, 1–5 (2021).

    PubMed  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04607655 (2021).

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03809052 (2021).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03832946 (2021).

Download references

Acknowledgements

Work in M.T.D.’s and G.A.R.’s labs is supported by grants from the Agency for Promotion of Science and Technology (PICT 2016-1851 and PICT 2018-03737 to M.T.D. and PICT 2017-0494 to G.A.R.) as well as grants from SIIP-UNCUYO 2019 to M.T.D. and NIH grant CA221208 to G.A.R. and D.O.C. The authors are also thankful for generous support from Sales, Bunge & Born and Richard Lounsbery Foundations to G.A.R.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of content, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Gabriel A. Rabinovich or Maria T. Damiani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Sachiko Sato, Hakon Leffler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lujan, A.L., Croci, D.O., Rabinovich, G.A. et al. Galectins as potential therapeutic targets in STIs in the female genital tract. Nat Rev Urol 19, 240–252 (2022). https://doi.org/10.1038/s41585-021-00562-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00562-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology