Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rethinking antiphospholipid syndrome to guide future management and research

Abstract

Antiphospholipid syndrome (APS) consists of thrombotic, non-thrombotic and obstetric clinical manifestations developing in individuals with persistent antiphospholipid antibodies (aPL). Although researchers have made progress in characterizing different clinical phenotypes of aPL-positive people, the current approach to clinical management is still mostly based on a ‘one size fits all’ strategy, which is derived from the results of a limited number of prospective, controlled studies. With the 2023 publication of the ACR–EULAR APS classification criteria, it is now possible to rethink APS, to lay the groundwork for subphenotyping through novel pathophysiology-informed approaches, and to set a future APS research agenda guided by unmet needs in clinical management.

Key points

  • People with antiphospholipid syndrome (APS) can develop thrombotic, non-thrombotic and obstetric clinical problems in the persistent presence of antiphospholipid antibodies (aPL).

  • Definitions of APS vary in sophistication and have different purposes, such as describing APS to patients and learners, diagnosing and risk-stratifying patients in the clinic, or classifying patients for research purposes.

  • Future aims include better definition and subphenotyping of APS based on greater understanding of its underlying pathophysiology, using precisely defined autoantibodies, pathway-informed biomarkers, and modern genomic, transcriptomic and proteomic approaches.

  • Despite different clinical phenotypes among aPL-positive individuals, current management is mostly based on a ‘one size fits all’ strategy, derived from a limited number of prospective controlled studies.

  • The 2023 ACR–EULAR APS classification criteria should support a future research agenda aiming for better definition and subphenotyping of APS, and for more personalized and proactive management of all aPL-positive individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garcia, D. & Erkan, D. Diagnosis and management of the antiphospholipid syndrome. N. Engl. J. Med. 378, 2010–2021 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Knight, J. S., Branch, D. W. & Ortel, T. L. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ 380, e069717 (2023).

    Article  PubMed  Google Scholar 

  3. Andreoli, L. et al. Estimated frequency of antiphospholipid antibodies in patients with pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: a critical review of the literature. Arthritis Care Res. 65, 1869–1873 (2013).

    Article  CAS  Google Scholar 

  4. Sciascia, S. et al. The estimated frequency of antiphospholipid antibodies in young adults with cerebrovascular events: a systematic review. Ann. Rheum. Dis. 74, 2028–2033 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Duarte-Garcia, A. et al. The epidemiology of antiphospholipid syndrome: a population-based study. Arthritis Rheumatol. 71, 1545–1552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ioannou, Y., Beukelman, T., Murray, M. & Erkan, D. Incidence of antiphospholipid syndrome: is estimation currently possible? Eur. J. Rheumatol. 10, 39–44 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taraborelli, M. et al. The contribution of antiphospholipid antibodies to organ damage in systemic lupus erythematosus. Lupus 25, 1365–1368 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Barbhaiya, M. et al. Efforts to better characterize “Antiphospholipid Antibody Nephropathy” for the 2023 ACR/EULAR antiphospholipid syndrome classification criteria: renal pathology subcommittee report. J. Rheumatol. 51, 150–159 (2024).

    Article  PubMed  Google Scholar 

  9. Crowther, M. et al. A comparison of two intensities of warfarin for the prevention of recurrent thrombosis in patients with the antiphospholipid antibody syndrome. N. Engl. J. Med. 18, 1133–1138 (2003).

    Article  Google Scholar 

  10. Finazzi, G. et al. A randomized clinical trial of high-intensity warfarin vs. conventional antithrombotic therapy for the prevention of recurrent thrombosis in patients with the antiphospholipid syndrome (WAPS). J. Thromb. Haemost. 3, 848–853 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Barbhaiya, M. et al. 2023 ACR/EULAR antiphospholipid syndrome classification criteria. Arthritis Rheumatol. 75, 1687–1702 (2023).

    Article  PubMed  Google Scholar 

  12. Chayoua, W. et al. Antiprothrombin antibodies induce platelet activation: a possible explanation for anti-FXa therapy failure in patients with antiphospholipid syndrome? J. Thromb. Haemost. 19, 1776–1782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Müller-Calleja, N. et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 12, eabc0956 (2021).

    Article  Google Scholar 

  14. Ruben, E. et al. The J-elongated conformation of β2-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome. J. Biol. Chem. 295, 10794–10806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, S., Wulf, J. III, Basore, K. & Pozzi, N. Structural analyses of β2-glycoprotein I: is there a circular conformation? J. Thromb. Haemost. 21, 3511–3521 (2023).

    Article  PubMed  Google Scholar 

  16. Canaud, G. et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med. 371, 303–312 (2014).

    Article  PubMed  Google Scholar 

  17. Ramesh, S. et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J. Clin. Invest. 121, 120–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Canaud, G., Legendre, C. & Terzi, F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: a new player in the game. Lupus 24, 227–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Long, B. R. & Leya, F. The role of antiphospholipid syndrome in cardiovascular disease. Hematol. Oncol. Clin. North. Am. 22, 79–94 (2008).

    Article  PubMed  Google Scholar 

  20. Alarcon-Segovia, D., Cardiel, M. H. & Reyes, E. Antiphospholipid arterial vasculopathy. J. Rheumatol. 16, 762–767 (1989).

    CAS  PubMed  Google Scholar 

  21. Hughson, M. D., McCarty, G. A. & Brumback, R. A. Spectrum of vascular pathology affecting patients with the antiphospholipid syndrome. Hum. Pathol. 26, 716–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Dorland, W. Dorland’s Illustrated Medical Dictionary 32nd edn (Saunders/Elsevier, 2012).

  23. Calvo, F., Karras, B. T., Phillips, R., Kimball, A. M. & Wolf, F. Diagnoses, syndromes, and diseases: a knowledge representation problem. AMIA Annu. Symp. Proc. 2003, 802 (2003).

    PubMed  PubMed Central  Google Scholar 

  24. Martirosyan, A., Aminov, R. & Manukyan, G. Environmental triggers of autoreactive responses: induction of antiphospholipid antibody formation. Front. Immunol. 10, 1609 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willis, R., Harris, E. N. & Pierangeli, S. S. Pathogenesis of the antiphospholipid syndrome. Semin. Thromb. Hemost. 38, 305–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal, R. et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res. 67, 891–897 (2015).

    Article  Google Scholar 

  27. Wilson, W. A. et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 42, 1309–1311 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome. J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Barbhaiya, M. et al. Development of a new international antiphospholipid syndrome classification criteria phase I/II report: generation and reduction of candidate criteria. Arthritis Care Res. 73, 1490–1501 (2021).

    Article  Google Scholar 

  30. Kelchtermans, H., Pelkmans, L., de Laat, B. & Devreese, K. M. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J. Thromb. Haemost. 14, 1530–1548 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Chayoua, W. et al. The (non-)sense of detecting anti-cardiolipin and anti-β2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J. Thromb. Haemost. 18, 169–179 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Galli, M. & Barbui, T. Antiphospholipid antibodies and thrombosis: strength of association. Hematol. J. 4, 180–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Brusch, A., Bundell, C. & Hollingsworth, P. Immunoglobulin G is the only anti-beta-2-glycoprotein I isotype that associates with unprovoked thrombotic events among hospital patients. Pathology 46, 234–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Zuo, Y. et al. Prevalence of antiphospholipid antibodies and association with incident cardiovascular events. JAMA Netw. Open. 6, e236530 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cuadrado, M. J. et al. Can anticoagulation be withdrawn in APS patients after aPL negativization? Autoimmun. Rev. https://doi.org/10.1016/j.autrev.2023.103427 (2023).

  36. Erkan, D. et al. Real-world experience with antiphospholipid antibody tests: how stable are results over time? Ann. Rheum. Dis. 64, 1321–1325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandevelde, A. et al. Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC subcommittee on lupus anticoagulant/antiphospholipid antibodies. J. Thromb. Haemost. 20, 508–524 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Erkan, D. et al. Response to: correspondence on ‘2023 ACR/EULAR antiphospholipid syndrome classification criteria’ by Miro-Mur et al. Ann Rheum Dis. 83, e3 (2024).

  39. van den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lundberg, I. E. et al. 2017 European League Against Rheumatism/American College of rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 69, 2271–2282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roubey, R. A., Eisenberg, R. A., Harper, M. F. & Winfield, J. B. “Anticardiolipin” autoantibodies recognize beta 2-glycoprotein I in the absence of phospholipid. Importance of Ag density and bivalent binding. J. Immunol. 154, 954–960 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Levy, R. A., de Meis, E. & Pierangeli, S. S. An adapted ELISA method for differentiating pathogenic from nonpathogenic aPL by a beta 2 glycoprotein I dependency anticardiolipin assay. Thromb. Res. 114, 573–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Banzato, A. et al. Antibodies to Domain I of β2Glycoprotein I are in close relation to patients risk categories in Antiphospholipid Syndrome (APS). Thromb. Res. 128, 583–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Radin, M., Cecchi, I., Roccatello, D., Meroni, P. L. & Sciascia, S. Prevalence and thrombotic risk assessment of anti-β2 glycoprotein I domain I antibodies: a systematic review. Semin. Thromb. Hemost. 44, 466–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Andreoli, L. et al. Anti-β2-glycoprotein I IgG antibodies from 1-year-old healthy children born to mothers with systemic autoimmune diseases preferentially target domain 4/5: might it be the reason for their ‘innocent’ profile? Ann. Rheum. Dis. 70, 380–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Andreoli, L. et al. Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against β2 -glycoprotein I domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthritis Rheumatol. 67, 2196–2204 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Atsumi, T. et al. Association of autoantibodies against the phosphatidylserine-prothrombin complex with manifestations of the antiphospholipid syndrome and with the presence of lupus anticoagulant. Arthritis Rheum. 43, 1982–1993 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, R., Cheng, C. Y., Yang, Y., Denas, G. & Pengo, V. Prevalence of anti-phosphatidylserine/prothrombin antibodies and association with antiphospholipid antibody profiles in patients with antiphospholipid syndrome: a systematic review and meta-analysis. Thromb. Res. 214, 106–114 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Cifù, A., Domenis, R., Pistis, C., Curcio, F. & Fabris, M. Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells. Auto. Immun. Highlights 10, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Noordermeer, T. et al. Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies interfere with cleavage of factor V(a) by activated protein C. J. Thromb. Haemost. 21, 2509–2518 (2023).

    Article  PubMed  Google Scholar 

  51. Chinnaraj, M., Planer, W., Pengo, V. & Pozzi, N. Discovery and characterization of two novel subpopulations of aPS/PT antibodies in patients at high risk of thrombosis. Blood Adv. 3, 1738–1749 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andreoli, L. et al. Antinucleosome antibodies in primary antiphospholipid syndrome: a hint at systemic autoimmunity? J. Autoimmun. 30, 51–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Zuo, Y. et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 72, 2130–2135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zuo, Y. et al. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: results from the antiphospholipid syndrome alliance for clinical trials and international networking clinical database and repository. Arthritis Rheumatol. 75, 1407–1414 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Kmeťová, K. et al. Interaction of the antiphospholipid syndrome autoantigen beta-2 glycoprotein I with DNA and neutrophil extracellular traps. Clin. Immunol. 255, 109714 (2023).

    Article  PubMed  Google Scholar 

  56. Grossi, C. et al. Beta 2 glycoprotein I and neutrophil extracellular traps: potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Front. Immunol. 13, 1076167 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guedon, A. F. et al. Identifying high-risk profile in primary antiphospholipid syndrome through cluster analysis: French multicentric cohort study. RMD Open. 9, e002881 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guedon, A. F. et al. Non-criteria manifestations in primary antiphospholipid syndrome: a French multicenter retrospective cohort study. Arthritis Res. Ther. 24, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 195, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fischetti, F. et al. Thrombus formation induced by antibodies to β2-glycoprotein I is complement dependent and requires a priming factor. Blood 106, 2340–2346 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Pierangeli, S. S. et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 52, 2120–2124 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Yelnik, C. M. et al. Patients with refractory catastrophic antiphospholipid syndrome respond inconsistently to eculizumab. Blood 136, 2473–2477 (2020).

    Article  PubMed  Google Scholar 

  63. Erkan, D., Vega, J., O’Malley, T. & Concoff, A. Cell-bound complement activation products in antiphospholipid antibody-positive patients without other systemic autoimmune diseases [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 0099 (2023).

  64. Yelnik, C. M. et al. Relevance of inflammatory and complement activation biomarkers profiling in antiphospholipid syndrome patients outside acute thrombosis. Clin. Exp. Rheumatol. 41, 1875–1881 (2023).

    PubMed  Google Scholar 

  65. Yelnik, C.M. et al. Complement activation as a marker of thrombosis risk in antiphospholipid antibody positive patients: prospective results from antiphospholipid syndrome alliance for clinical trials and international networking (APS ACTION) clinical database and repository (“Registry”) [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 1605 (2023).

  66. Chaturvedi, S. et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood 135, 239–251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cole, M. A., Gerber, G. F. & Chaturvedi, S. Complement biomarkers in the antiphospholipid syndrome — approaches to quantification and implications for clinical management. Clin. Immunol. 257, 109828 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Fakhouri, F., Schwotzer, N. & Frémeaux-Bacchi, V. How I diagnose and treat atypical hemolytic uremic syndrome. Blood 141, 984–995 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Kalunian, K. C. et al. Measurement of cell-bound complement activation products enhances diagnostic performance in systemic lupus erythematosus. Arthritis Rheum. 64, 4040–4047 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Lonati, P. A. et al. Blood cell-bound C4d as a marker of complement activation in patients with the antiphospholipid syndrome. Front. Immunol. 10, 773 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nochy, D. et al. The intrarenal vascular lesions associated with primary antiphospholipid syndrome. J. Am. Soc. Nephrol. 10, 507–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Sevim, E. et al. Mammalian target of rapamycin pathway assessment in antiphospholipid antibody-positive patients with livedo. J. Rheumatol. 49, 1026–1030 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Liang, W. et al. Hippo-YAP1-CCN2 signaling by microvascular endothelial cells licenses vascular smooth muscle cell proliferation in antiphospholipid syndrome [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 0111 (2023).

  74. Zuily, S. et al. Cluster analysis for the identification of clinical phenotypes among antiphospholipid antibody-positive patients from the APS ACTION Registry. Lupus 29, 1353–1363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ogata, Y. et al. Morbidity and mortality in antiphospholipid syndrome based on cluster analysis: a 10-year longitudinal cohort study. Rheumatology 60, 1331–1337 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Sciascia, S. et al. Identifying phenotypes of patients with antiphospholipid antibodies: results from a cluster analysis in a large cohort of patients. Rheumatology 60, 1106–1113 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Qi, W. et al. Clinical characteristics and prognosis of patients with antiphospholipid antibodies based on cluster analysis: an 8-year cohort study. Arthritis Res. Ther. 24, 140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nguyen, Y. et al. Determination of four homogeneous subgroups of patients with antiphospholipid syndrome: a cluster analysis based on 509 cases. Rheumatology 62, 2813–2819 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Barturen, G. et al. Integrative analysis reveals a molecular stratification of systemic autoimmune diseases. Arthritis Rheumatol. 73, 1073–1085 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, C. M. A., Cooles, F. A. H. & Isaacs, J. D. Precision medicine: the precision gap in rheumatic disease. Nat. Rev. Rheumatol. 18, 725–733 (2022).

    Article  PubMed  Google Scholar 

  81. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immun. 20, 902–914 (2019).

    Article  CAS  Google Scholar 

  82. Choi, M. Y. et al. Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes. Ann. Rheum. Dis. 82, 927–936 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Skaug, B. et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann. Rheum. Dis. 79, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Clark, K. E. N. et al. Molecular basis for clinical diversity between autoantibody subsets in diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 80, 1584–1593 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Knight, J. S. et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight 2, e93897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ugolini-Lopes, M. R. et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: association with earlier disease onset and preeclampsia. Autoimmun. Rev. 18, 393–398 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Verrou, K. M., Sfikakis, P. P. & Tektonidou, M. G. Whole blood transcriptome identifies interferon-regulated genes as key drivers in thrombotic primary antiphospholipid syndrome. J. Autoimmun. 134, 102978 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Cecchi, I. et al. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev. Clin. Immunol. 17, 395–406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pérez-Sánchez, L. et al. Characterization of antiphospholipid syndrome atherothrombotic risk by unsupervised integrated transcriptomic analyses. Arterioscler. Thromb. Vasc. Biol. 41, 865–877 (2021).

    Article  PubMed  Google Scholar 

  90. Plunde, O. et al. Antiphospholipid antibodies in patients with calcific aortic valve stenosis. Rheumatology 62, 1187–1196 (2023).

    Article  PubMed  Google Scholar 

  91. Long, Y., Zhao, J., Li, M. & Zeng, X. Characterization of B-cell subsets in antiphospholipid syndrome patients: implications for disease phenotype and pathogenesis [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 0105 (2023).

  92. Ambati, A. et al. Molecular stratification of antiphospholipid syndrome patients through integrative analysis of the whole-blood RNA transcriptome [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 0112 (2023).

  93. Casares, D. et al. A genome-wide association study suggests new susceptibility loci for primary antiphospholipid syndrome [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 0738 (2023).

  94. Butt, A. et al. Plasma proteomic profiling in antiphospholipid antibody-positive patients with different clinical phenotypes: results from the antiphospholipid syndrome alliance for clinical trials and international networking (APS ACTION) registry [abstract]. Arthritis Rheumatol. 75 (suppl. 9), abstract 1608 (2023).

  95. Cohen, H. et al. 16th International Congress on Antiphospholipid Antibodies Task Force report on antiphospholipid syndrome treatment trends. Lupus 29, 1571–1593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Erton, Z. B. & Erkan, D. Treatment advances in antiphospholipid syndrome: 2022 update. Curr. Opin. Pharmacol. 65, 102212 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Erton, Z. B. et al. Immunosuppression use in primary antiphospholipid antibody-positive patients: descriptive analysis of the antiphospholipid syndrome alliance for clinical trials and international networking (APS ACTION) clinical database and repository (“Registry”). Lupus 31, 1770–1776 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Erkan, D. Expert perspective: management of microvascular and catastrophic antiphospholipid syndrome. Arthritis Rheumatol. 73, 1780–1790 (2021).

    Article  PubMed  Google Scholar 

  99. Burcoglu-O’Ral, A., Erkan, D. & Asherson, R. Treatment of catastrophic antiphospholipid syndrome with defibrotide, a proposed vascular endothelial cell modulator. J. Rheumatol. 29, 2006–2011 (2022).

    Google Scholar 

  100. Ali, R. A. et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun. 10, 1916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ali, R. A. et al. Defibrotide inhibits antiphospholipid antibody-mediated neutrophil extracellular trap formation and venous thrombosis. Arthritis Rheumatol. 74, 902–907 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van den Hoogen, L. L. & Bisoendial, R. J. B-cells and BAFF in primary antiphospholipid syndrome, targets for therapy? J. Clin. Med. 12, 18 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Erkan, D., Vega, J., Ramón, G., Kozora, E. & Lockshin, M. D. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 65, 464–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Jenks, S. A. et al. Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gomez-Bañuelos, E. et al. Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus. Nat. Commun. 14, 1388 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Steinmetz, T. D. et al. Association of circulating antibody-secreting cell maturity with disease features in primary Sjögren’s syndrome. Arthritis Rheumatol. 75, 973–983 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alvarez-Rodriguez, L. et al. Peripheral B-cell subset distribution in primary antiphospholipid syndrome. Int. J. Mol. Sci. 19, 589 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. van den Hoogen, L. L. et al. Increased B-cell activating factor (BAFF)/B-lymphocyte stimulator (BLyS) in primary antiphospholipid syndrome is associated with higher adjusted global antiphospholipid syndrome scores. RMD Open 4, e000693 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hisada, R. et al. Circulating plasmablasts contribute to antiphospholipid antibody production, associated with type I interferon upregulation. J. Thromb. Haemost. 17, 1134–1143 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Kraaij, T. et al. Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology 53, 2122–2124 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Gualtierotti, R. et al. Successful sequential therapy with rituximab and belimumab in patients with active systemic lupus erythematosus: a case series. Clin. Exp. Rheumatol. 36, 643–647 (2018).

    PubMed  Google Scholar 

  113. Andrade, D. & Tektonidou, M. G. Assessing disease activity and damage in antiphospholipid syndrome. Clin. Immunol. 255, 109727 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Devreese, K. M. J. et al. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis: update of the guidelines for lupus anticoagulant detection and interpretation. J. Thromb. Haemost. 18, 2828–2839 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Zuo, Y., Barbhaiya, M. & Erkan, D. Primary thrombosis prophylaxis in persistently antiphospholipid antibody-positive individuals: where do we stand in 2018? Curr. Rheumatol. Rev. 20, 1–12 (2018).

    Google Scholar 

  116. Sciascia, S. et al. GAPSS: the global anti-phospholipid syndrome score. Rheumatology 52, 1397–1403 (2013).

    Article  PubMed  Google Scholar 

  117. Otomo, K. et al. Efficacy of the antiphospholipid score for the diagnosis of antiphospholipid syndrome and its predictive value for thrombotic events. Arthritis Rheum. 64, 504–512 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Sciascia, S. et al. 16th International Congress on Antiphospholipid Antibodies Task Force report on clinical manifestations of antiphospholipid syndrome. Lupus 30, 1314–1326 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Legault, K. et al. McMaster RARE-Bestpractices clinical practice guideline on diagnosis and management of the catastrophic antiphospholipid syndrome. J. Thromb. Haemost. 16, 1656–1664 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Doruk Erkan.

Ethics declarations

Competing interests

J.S.K. has received consulting fees from Argenix, Jazz Pharmaceuticals and Roivant Sciences, and is on the advisory board for Otsuka/Visterra. D.E. has received research grants from, GSK and Exagen, consulting fees from Argenix, Cadrenal and Chugai and royalties from Up-To-Date, and is on the speaker’s bureau for GSK and Aurinia, and the advisory boards for GSK and Otsuka/Visterra.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Ariela Hoxha, who co-reviewed with Marco Lovisotto; Arsène Mékinian; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, J.S., Erkan, D. Rethinking antiphospholipid syndrome to guide future management and research. Nat Rev Rheumatol (2024). https://doi.org/10.1038/s41584-024-01110-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41584-024-01110-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing