Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibitory stabilization and cortical computation

Abstract

Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition-stabilized dynamics emerge in networks with strong recurrent excitation and inhibition.
Fig. 2: Inhibitory stabilization in the brain.
Fig. 3: Spatio-temporal patterns of neural activity and inhibitory stabilization.

Similar content being viewed by others

References

  1. Jiang, X. et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    CAS  PubMed  Google Scholar 

  3. DeFelipe, J. & Fariñas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

    CAS  PubMed  Google Scholar 

  4. Le Be, J.-V., Silberberg, G., Wang, Y. & Markram, H. Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb. Cortex 17, 2204–2213 (2007).

    Google Scholar 

  5. DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog. Brain Res. 136, 215–238 (2002).

    PubMed  Google Scholar 

  6. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, 1998).

  7. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005).

    CAS  PubMed  Google Scholar 

  9. Silver, R. A. Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    CAS  PubMed  Google Scholar 

  11. Poirazi, P. & Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).

    CAS  PubMed  Google Scholar 

  12. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    CAS  PubMed  Google Scholar 

  13. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed  Google Scholar 

  14. Vogels, T. P., Rajan, K. & Abbott, L. F. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).

    CAS  PubMed  Google Scholar 

  15. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973).

    CAS  PubMed  Google Scholar 

  17. Ermentrout, G. B. & Cowan, J. D. A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137–150 (1979).

    CAS  PubMed  Google Scholar 

  18. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    PubMed  Google Scholar 

  19. Pascual-Leone, A., Amedi, A., Fregni, F. & Merabet, L. B. The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401 (2005).

    CAS  PubMed  Google Scholar 

  20. Goto, Y., Yang, C. R. & Otani, S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol. Psychiatry 67, 199–207 (2010).

    PubMed  Google Scholar 

  21. Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K. & Palm, G. Dynamics of neuronal firing correlation: modulation of ‘effective connectivity’. J. Neurophysiol. 61, 900–917 (1989).

    CAS  PubMed  Google Scholar 

  22. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995).

    CAS  PubMed  Google Scholar 

  23. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    CAS  PubMed  Google Scholar 

  25. Ferster, D. & Miller, K. D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    CAS  PubMed  Google Scholar 

  26. Riesenhuber, M. & Poggio, T. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–168 (2002).

    CAS  PubMed  Google Scholar 

  27. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).

    CAS  PubMed  Google Scholar 

  28. Giese, M. A. & Poggio, T. Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4, 179–192 (2003).

    CAS  PubMed  Google Scholar 

  29. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, H. et al. Recurrent computations for visual pattern completion. Proc. Natl Acad. Sci. USA 115, 8835–8840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wyatte, D., Curran, T. & O’Reilly, R. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. J. Cogn. Neurosci. 24, 2248–2261 (2012).

    PubMed  Google Scholar 

  33. Kietzmann, T. C. et al. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci. 22, 974–983 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajaei, K., Mohsenzadeh, Y., Ebrahimpour, R. & Khaligh-Razavi, S.-M. Beyond core object recognition: recurrent processes account for object recognition under occlusion. PLoS Comput. Biol. 15, e1007001 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung, S. & Ferster, D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20, 1177–1189 (1998).

    CAS  PubMed  Google Scholar 

  37. Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Y., Ibrahim, L. A., Liu, B., Zhang, L. I. & Tao, H. W. Linear transformation of thalamocortical input by intracortical excitation. Nat. Neurosci. 16, 1324–1330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peters, A. & Payne, B. R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).

    CAS  PubMed  Google Scholar 

  40. Peters, A., Payne, B. R. & Budd, J. A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb. Cortex 4, 215–229 (1994).

    CAS  PubMed  Google Scholar 

  41. Przybyszewski, A. W. Vision: does top-down processing help us to see? Curr. Biol. 8, R135–R139 (1998).

    CAS  PubMed  Google Scholar 

  42. Briggs, F. & Usrey, W. M. Corticogeniculate feedback and visual processing in the primate. J. Physiol. 589, 33–40 (2011).

    CAS  PubMed  Google Scholar 

  43. Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    CAS  PubMed  Google Scholar 

  44. Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sillito, A. M. & Jones, H. E. Corticothalamic interactions in the transfer of visual information. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1739–1752 (2002).

    PubMed  PubMed Central  Google Scholar 

  46. Mumford, D. On the computational architecture of the neocortex. Biol. Cybern. 65, 135–145 (1991).

    CAS  PubMed  Google Scholar 

  47. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Keller, A. J., Roth, M. M. & Scanziani, M. Feedback generates a second receptive field in neurons of the visual cortex. Nature 582, 545–549 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    CAS  PubMed  Google Scholar 

  50. Miller, J.-E. K., Ayzenshtat, I., Carrillo-Reid, L. & Yuste, R. Visual stimuli recruit intrinsically generated cortical ensembles. Proc. Natl Acad. Sci. USA 111, E4053–E4061 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347–352 (2007).

    CAS  PubMed  Google Scholar 

  52. Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and recalling cortical ensembles. Science 353, 691–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reilly, K. T. Persistent hand motor commands in the amputees’ brain. Brain 129, 2211–2223 (2006).

    PubMed  Google Scholar 

  54. Newbold, D. J. et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron 107, 580–589.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    CAS  PubMed  Google Scholar 

  56. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573 (2004).

    CAS  PubMed  Google Scholar 

  57. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    CAS  PubMed  Google Scholar 

  58. Douglas, R. J. & Martin, K. A. C. Canonical cortical circuits. in Handbook of Brain Microcircuits (eds Shepherd, G. M. & Grillner, S.) 23–34 (Oxford University Press, 2017).

  59. Douglas, R. J. & Martin, K. A. C. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    CAS  PubMed  Google Scholar 

  60. Douglas, R. J. & Martin, K. A. C. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, R496–R500 (2007).

    CAS  PubMed  Google Scholar 

  61. Mumford, D. On the computational architecture of the neocortex. Biol. Cybern. 66, 241–251 (1992).

    CAS  PubMed  Google Scholar 

  62. Li, L., Li, Y., Zhou, M., Tao, H. W. & Zhang, L. I. Intracortical multiplication of thalamocortical signals in mouse auditory cortex. Nat. Neurosci. 16, 1179–1181 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Peron, S. et al. Recurrent interactions in local cortical circuits. Nature 579, 256–259 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Barnes, S. J. et al. Subnetwork-specific homeostatic plasticity in mouse visual cortex in vivo. Neuron 86, 1290–1303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwartzkroin, P. A. Role of the hippocampus in epilepsy. Hippocampus 4, 239–242 (1994).

    CAS  PubMed  Google Scholar 

  66. McNamara, J. O., Constant Byrne, M., Dasheiff, R. M. & Gregory Fitz, J. The kindling model of epilepsy: a review. Prog. Neurobiol. 15, 139–159 (1980).

    CAS  PubMed  Google Scholar 

  67. Sveinbjornsdottir, S. & Duncan, J. S. Parietal and occipital lobe epilepsy: a review. Epilepsia 34, 493–521 (1993).

    CAS  PubMed  Google Scholar 

  68. Maglóczky, Z. & Freund, T. F. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci. 28, 334–340 (2005).

    PubMed  Google Scholar 

  69. McCormick, D. A. & Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846 (2001).

    CAS  PubMed  Google Scholar 

  70. Devinsky, O. et al. Epilepsy. Nat. Rev. Dis. Prim. 4, 18024 (2018).

    PubMed  Google Scholar 

  71. Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004).

    PubMed  Google Scholar 

  72. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M. & Asada, M. Information processing in echo state networks at the edge of chaos. Theory Biosci. 131, 205–213 (2012).

    PubMed  Google Scholar 

  73. Toyoizumi, T. & Abbott, L. F. Beyond the edge of chaos: amplification and temporal integration by recurrent networks in the chaotic regime. Phys. Rev. E 84, 051908 (2011).

    CAS  Google Scholar 

  74. Laje, R. & Buonomano, D. V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ostojic, S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17, 594–600 (2014).

    CAS  PubMed  Google Scholar 

  76. Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V. & Scanziani, M. Input normalization by global feedforward inhibition expands cortical dynamic range. Nat. Neurosci. 12, 1577–1585 (2009).

    CAS  PubMed  Google Scholar 

  77. Cruikshank, S. J., Lewis, T. J. & Connors, B. W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat. Neurosci. 10, 462–468 (2007).

    CAS  PubMed  Google Scholar 

  78. van Vreeswijk, C. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321–1371 (1998).

    PubMed  Google Scholar 

  79. Deneve, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016).

    CAS  PubMed  Google Scholar 

  80. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 17, 4382–4388 (1997). By combining theory and experiments in the hippocampus, this study shows that paradoxical effects of perturbing inhibitory neurons can arise in biological networks.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Freund, T. F. & Antal, M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336, 170–173 (1988).

    CAS  PubMed  Google Scholar 

  82. Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D. & Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578–592 (2009). This study analyses mechanisms underlying surround suppression in the cat visual cortex to show that paradoxical effects can contribute to visual processing.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubin, D. B., Van Hooser, S. D. & Miller, K. D. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85, 402–417 (2015). This study shows that different computations, such as input normalization and surround suppression in the visual cortex, can be explained by SSNs.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS  PubMed  Google Scholar 

  86. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  87. Atallah, B. V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012). This study addresses inhibitory stabilization in cortical networks by optogenetically perturbing inhibitory neurons in the mouse visual cortex, and concludes that paradoxical effects could not be observed.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kato, H. K., Asinof, S. K. & Isaacson, J. S. Network-level control of frequency tuning in auditory cortex. Neuron 95, 412–423.e4 (2017). This study combines intracellular recordings with optogenetic inactivation of inhibitory interneurons in the auditory cortex of awake behaving mice to show paradoxical effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Adesnik, H. Synaptic mechanisms of feature coding in the visual cortex of awake mice. Neuron 95, 1147–1159.e4 (2017). Using intracellular recordings in the visual cortex of awake behaving mice, this study shows paradoxical effects of perturbing inhibitory neurons and of surround modulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Litwin-Kumar, A., Rosenbaum, R. & Doiron, B. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. J. Neurophysiol. 115, 1399–1409 (2016). This theoretical study evaluates the presence of inhibitory stabilization in networks with multiple subtypes of inhibition.

    PubMed  PubMed Central  Google Scholar 

  91. Ahmadian, Y., Rubin, D. B. & Miller, K. D. Analysis of the stabilized supralinear network. Neural Comput. 25, 1994–2037 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8, (2019). The study tests several spatio-temporal protocols and shows that the strength and spatial scale of optogenetic perturbation matter for observing paradoxical effects.

  93. Sadeh, S., Silver, R. A., Mrsic-Flogel, T. D. & Muir, D. R. Assessing the role of inhibition in stabilizing neocortical networks requires large-scale perturbation of the inhibitory population. J. Neurosci. 37, 12050–12067 (2017). This study extends ISN models to networks with extended populations and shows that detecting paradoxical effects depends on the fraction of perturbed inhibitory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutnisky, D. A. et al. Mechanisms underlying a thalamocortical transformation during active tactile sensation. PLoS Comput. Biol. 13, e1005576 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Sanzeni, A. et al. Inhibition stabilization is a widespread property of cortical networks. eLife 9, e54875 (2020). The study shows that paradoxical effects can be observed in different cortices and across different brain states in mice, but only when perturbations affect a large number of inhibitory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Campagna, J. A., Miller, K. W. & Forman, S. A. Mechanisms of actions of inhaled anesthetics. N. Engl. J. Med. 348, 2110–2124 (2003).

    CAS  PubMed  Google Scholar 

  97. Richards, C. D. Actions of general anaesthetics on synaptic transmission in the CNS. Br. J. Anaesth. 55, 201–207 (1983).

    CAS  PubMed  Google Scholar 

  98. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gleeson, P. et al. Open source brain: a collaborative resource for visualizing, analyzing, simulating, and developing standardized models of neurons and circuits. Neuron 103, 395–411.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sadeh, S. & Clopath, C. Theory of neuronal perturbome in cortical networks. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2004568117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee, S.-H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wilson, N. R., Runyan, C. A., Wang, F. L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. El-Boustani, S., Wilson, N. R., Runyan, C. A. & Sur, M. El-Boustani et al. reply. Nature 508, E3–E4 (2014).

    CAS  PubMed  Google Scholar 

  105. Lee, S.-H., Kwan, A. C. & Dan, Y. Interneuron subtypes and orientation tuning. Nature 508, E1–E2 (2014).

    CAS  PubMed  Google Scholar 

  106. Atallah, B. V., Scanziani, M. & Carandini, M. Atallah et al. reply. Nature 508, E3 (2014).

    CAS  PubMed  Google Scholar 

  107. Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100 (2013).

    PubMed  Google Scholar 

  108. Rudolph, M., Pospischil, M., Timofeev, I. & Destexhe, A. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27, 5280–5290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rochefort, N. L. et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl Acad. Sci. USA 106, 15049–15054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sadeh, S. & Clopath, C. Patterned perturbation of inhibition can reveal the dynamical structure of neural processing. eLife 9, e52757 (2020). The study shows that ISNs with functionally specific subnetworks express feature-specific paradoxical effects, which can be detected using patterned perturbations.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    CAS  PubMed  Google Scholar 

  112. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hattori, R., Kuchibhotla, K. V., Froemke, R. C. & Komiyama, T. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat. Neurosci. 20, 1199–1208 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mahrach, A., Chen, G., Li, N., van Vreeswijk, C. & Hansel, D. Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. eLife 9, e49967 (2020). This study observes a mixture of paradoxical and non-paradoxical effects in the mouse, and argues that these results could be consistent with network models with disinhibition and without unstable excitation.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Moore, A. K., Weible, A. P., Balmer, T. S., Trussell, L. O. & Wehr, M. Rapid rebalancing of excitation and inhibition by cortical circuitry. Neuron 97, 1341–1355.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, L. D., Miller, K. D. & Pack, C. C. A unifying motif for spatial and directional surround suppression. J. Neurosci. 38, 989–999 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference. Nat. Neurosci. 23, 1138–1149 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Garcia del Molino, L. C., Yang, G. R., Mejias, J. F. & Wang, X.-J. Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types. Elife 6, e29742 (2017). The study suggests that paradoxical effects of top-down modulation arise in network models with multiple inhibitory subtypes and non-linear input–output transfer functions.

    PubMed  PubMed Central  Google Scholar 

  122. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860.e5 (2018). This study shows that the reduction of variability after stimulus presentation in cortical networks can be explained by SSNs.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kraynyukova, N. & Tchumatchenko, T. Stabilized supralinear network can give rise to bistable, oscillatory, and persistent activity. Proc. Natl Acad. Sci. USA 115, 3464–3469 (2018). This article shows that working memory, persistent activity and rhythms can emerge from the bistable dynamics of SSNs.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    CAS  PubMed  Google Scholar 

  125. Galarreta, M. & Hestrin, S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl Acad. Sci. USA 99, 12438–12443 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, W. et al. Visual representations by cortical somatostatin inhibitory neurons–selective but with weak and delayed responses. J. Neurosci. 30, 14371–14379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Runyan, C. A. & Sur, M. Response selectivity is correlated to dendritic structure in parvalbumin-expressing inhibitory neurons in visual cortex. J. Neurosci. 33, 11724–11733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, L.-Y. et al. Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex. Cereb. Cortex 25, 1782–1791 (2015).

    PubMed  Google Scholar 

  130. El-Boustani, S. & Sur, M. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo. Nat. Commun. 5, 5689 (2014).

    CAS  PubMed  Google Scholar 

  131. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    PubMed  PubMed Central  Google Scholar 

  132. Wood, K. C., Blackwell, J. M. & Geffen, M. N. Cortical inhibitory interneurons control sensory processing. Curr. Opin. Neurobiol. 46, 200–207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jackson, J., Ayzenshtat, I., Karnani, M. M. & Yuste, R. VIP+ interneurons control neocortical activity across brain states. J. Neurophysiol. 115, 3008–3017 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ko, H. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Znamenskiy, P. et al. Functional selectivity and specific connectivity of inhibitory neurons in primary visual cortex. bioRxiv https://doi.org/10.1101/294835 (2018).

    Article  Google Scholar 

  140. Ko, H., Mrsic-Flogel, T. D. & Hofer, S. B. Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. J. Neurosci. 34, 9812–9816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Di Cristo, G. et al. Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat. Neurosci. 7, 1184–1186 (2004).

    PubMed  Google Scholar 

  142. Hennequin, G., Agnes, E. J. & Vogels, T. P. Inhibitory plasticity: balance, control, and codependence. Annu. Rev. Neurosci. 40, 557–579 (2017).

    CAS  PubMed  Google Scholar 

  143. Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011).

    CAS  PubMed  Google Scholar 

  144. Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352 (2010).

    CAS  PubMed  Google Scholar 

  145. Christie, I. K., Miller, P. & Van Hooser, S. D. Cortical amplification models of experience-dependent development of selective columns and response sparsification. J. Neurophysiol. 118, 874–893 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Hart, E. & Huk, A. C. Recurrent circuit dynamics underlie persistent activity in the macaque frontoparietal network. eLife 9, e52460 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hooks, B. M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Briggs, F. & Usrey, W. M. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18, 403–407 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lin, I.-C., Okun, M., Carandini, M. & Harris, K. D. Equations governing dynamics of excitation and inhibition in the mouse corticothalamic network. bioRxiv https://doi.org/10.1101/2020.06.03.132688 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wolf, F., Engelken, R., Puelma-Touzel, M., Weidinger, J. D. F. & Neef, A. Dynamical models of cortical circuits. Curr. Opin. Neurobiol. 25, 228–236 (2014).

    CAS  PubMed  Google Scholar 

  153. Ahmadian, Y. & Miller, K. D. What is the dynamical regime of cerebral cortex? arXiv 1908.10101v2 (2019).

  154. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J. & Wang, X.-J. Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions. Neuron 93, 1504–1517.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989).

    CAS  PubMed  Google Scholar 

  157. Le Duigou, C., Simonnet, J., Teleñczuk, M. T., Fricker, D. & Miles, R. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network. Front. Cell. Neurosci. 7, 262 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Dimsdale-Zucker, H. R., Ritchey, M., Ekstrom, A. D., Yonelinas, A. P. & Ranganath, C. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nat. Commun. 9, 294 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. Guzowski, J. F., Knierim, J. J. & Moser, E. I. Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44, 581–584 (2004).

    CAS  PubMed  Google Scholar 

  160. Lee, I., Yoganarasimha, D., Rao, G. & Knierim, J. J. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430, 456–459 (2004).

    CAS  PubMed  Google Scholar 

  161. Leutgeb, S. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004).

    CAS  PubMed  Google Scholar 

  162. Vazdarjanova, A. & Guzowski, J. F. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489–6496 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Mizuseki, K., Royer, S., Diba, K. & Buzsáki, G. Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22, 1659–1680 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    CAS  PubMed  Google Scholar 

  165. Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl Acad. Sci. USA 92, 3844–3848 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).

    CAS  PubMed  Google Scholar 

  170. Daie, K., Svoboda, K. & Druckmann, S. Targeted photostimulation uncovers circuit motifs supporting short-term memory. bioRxiv https://doi.org/10.1101/623785 (2019).

    Article  Google Scholar 

  171. Deutsch, D. et al. The neural basis for a persistent internal state in Drosophila females. bioRxiv https://doi.org/10.1101/2020.02.13.947952 (2020).

    Article  Google Scholar 

  172. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rolls, E. T. An attractor network in the hippocampus: theory and neurophysiology. Learn. Mem. 14, 714–731 (2007).

    PubMed  Google Scholar 

  174. Nakazawa, K. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Carandini, M. & Heeger, J. D. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Google Scholar 

  176. Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567, 334–340 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Busse, L., Wade, A. R. & Carandini, M. Representation of concurrent stimuli by population activity in visual cortex. Neuron 64, 931–942 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge University Press, 1991).

  179. Diesmann, M., Gewaltig, M.-O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).

    CAS  PubMed  Google Scholar 

  180. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    CAS  PubMed  Google Scholar 

  181. Kumar, A., Rotter, S. & Aertsen, A. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J. Neurosci. 28, 5268–5280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61, 635–648 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394–1406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Khan, A. G. et al. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat. Neurosci. 21, 851–859 (2018).

    CAS  PubMed  Google Scholar 

  185. Najafi, F. et al. Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning. Neuron 105, 165–179.e8 (2020).

    CAS  PubMed  Google Scholar 

  186. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Emiliani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang, Z., Russell, L. E., Packer, A. M., Gauld, O. M. & Häusser, M. Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods 15, 1037–1040 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell 178, 447–457.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, e32671 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Balasubramanian, K. et al. Propagating motor cortical dynamics facilitate movement initiation. Neuron 106, 526–536.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Lytton, W. W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626–637 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Liou, J.-Y. et al. A model for focal seizure onset, propagation, evolution, and progression. eLife 9, e50927 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cossart, R. et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62 (2001).

    CAS  PubMed  Google Scholar 

  197. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tetzlaff, T., Helias, M., Einevoll, G. T. & Diesmann, M. Decorrelation of neural-network activity by inhibitory feedback. PLoS Comput. Biol. 8, e1002596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sippy, T. & Yuste, R. Decorrelating action of inhibition in neocortical networks. J. Neurosci. 33, 9813–9830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    CAS  PubMed  Google Scholar 

  201. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    CAS  PubMed  Google Scholar 

  202. Busche, M. A. & Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150429 (2016).

    Google Scholar 

  203. Zott, B., Busche, M. A., Sperling, R. A. & Konnerth, A. What happens with the circuit in Alzheimer’s disease in mice and humans? Annu. Rev. Neurosci. 41, 277–297 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Schmolesky, M. T., Wang, Y., Pu, M. & Leventhal, A. G. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat. Neurosci. 3, 384–390 (2000).

    CAS  PubMed  Google Scholar 

  206. Yu, S., Wang, Y., Li, X., Zhou, Y. & Leventhal, A. G. Functional degradation of extrastriate visual cortex in senescent rhesus monkeys. Neuroscience 140, 1023–1029 (2006).

    CAS  PubMed  Google Scholar 

  207. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 16, 311–322 (2017).

    PubMed  PubMed Central  Google Scholar 

  208. Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70, 1158–1166 (2013).

    PubMed  PubMed Central  Google Scholar 

  209. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl Acad. Sci. USA 109, E2895–E2903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kehrer, C. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front. Mol. Neurosci. 1, 6 (2008).

    PubMed  PubMed Central  Google Scholar 

  214. Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

    PubMed  PubMed Central  Google Scholar 

  216. Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Toader, O., von Heimendahl, M., Schuelert, N., Nissen, W. & Rosenbrock, H. Suppression of parvalbumin interneuron activity in the prefrontal cortex recapitulates features of impaired excitatory/inhibitory balance and sensory processing in schizophrenia. Schizophr. Bull. 46, 981–989 (2020).

    PubMed  PubMed Central  Google Scholar 

  218. Haider, B. & McCormick, D. A. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62, 171–189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Zagha, E. & McCormick, D. A. Neural control of brain state. Curr. Opin. Neurobiol. 29, 178–186 (2014).

    CAS  PubMed  Google Scholar 

  220. Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 21, 80–92 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Zenke, F., Gerstner, W. & Ganguli, S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr. Opin. Neurobiol. 43, 166–176 (2017).

    CAS  PubMed  Google Scholar 

  222. Zenke, F. & Gerstner, W. Hebbian plasticity requires compensatory processes on multiple timescales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160259 (2017).

    PubMed  PubMed Central  Google Scholar 

  223. Lee, W.-C. A. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Zenke, F., Hennequin, G. & Gerstner, W. Synaptic plasticity in neural networks needs homeostasis with a fast rate detector. PLoS Comput. Biol. 9, e1003330 (2013).

    PubMed  PubMed Central  Google Scholar 

  225. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    CAS  PubMed  Google Scholar 

  226. Sadeh, S., Clopath, C. & Rotter, S. Emergence of functional specificity in balanced networks with synaptic plasticity. PLoS Comput. Biol. 11, e1004307 (2015).

    PubMed  PubMed Central  Google Scholar 

  227. Froemke, R. C. Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 38, 195–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Griffen, T. C. GABAergic synapses: their plasticity and role in sensory cortex. Front. Cell. Neurosci. 8, 91 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Lefort, S., Gray, A. C. & Turrigiano, G. G. Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period. Proc. Natl Acad. Sci. USA 110, E4540–E4547 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Donato, F., Rompani, S. B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    CAS  PubMed  Google Scholar 

  231. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Booker, S. A. & Vida, I. Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res. 373, 619–641 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Aertsen, A. Kumar and S. J. Barnes for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Claudia Clopath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks T. Tchumatchenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Effective connectivity

Measure of how two neurons (or populations) influence each other’s responses, which can be modulated in different regimes by the dynamic change in the efficacy of connections.

Receptive fields

Specific regions in the sensory space (such as the visual field) to which individual neurons are most responsive.

Spontaneous activity

The activity of the brain in the absence of external stimuli, governed by the intrinsic dynamics of the brain.

Pattern completion

The process of reactivation of a pattern of activity in neuronal responses, even when the input is not completely provided.

Temporal binding

The process of binding isolated events in time to form a coherent temporal sequence (for example, by extending brief neuronal responses).

Surround suppression

Suppression of neuronal responses by enlarging the stimulus, or adding a sensory stimulus outside the classical receptive field that would not activate the neurons if presented alone.

Optogenetics

Use of light to increase or decrease the activity of neurons through optical stimulation of light-sensitive ion channels.

Transfer functions

Functions describing how the output activity of a neuron changes with different input values.

Disinhibition

Inhibition of the suppressive effect of inhibitory neurons, which can lead to an effective increase in the activity of target neurons.

Supralinear stabilized networks

(SSNs). Inhibition-stabilized network models with non-linear neuronal responses, whereby neurons respond with higher gains to stronger inputs (supralinear input–output transfer functions).

Normalization

A non-linear computation whereby the activity of a neuron is normalized by another parameter (for instance, divided by the population activity).

Persistent activity

Neuronal activity that persists even when the stimulus is not present (for example, to help working memory retain the information).

Eigenvalue

The scalar factor by which a specific mode of activity (eigenvector) in a network is amplified, with values greater than 1 denoting unstable amplification.

Synfire chains

Multilayered feedforward networks that govern the flow of information via the synchronous cascade of activity from one layer to another.

Neural manifolds

Projections of the activity of neuronal populations in a reduced space composed of the main components of correlated activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeh, S., Clopath, C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 22, 21–37 (2021). https://doi.org/10.1038/s41583-020-00390-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-00390-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing