Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics and pathogenesis of CAKUT

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12–20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4–11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype–phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.

Key points

  • Congenital anomalies of the kidney and urinary tract (CAKUT) cause almost 50% of cases of chronic kidney disease in patients aged ≤30 years.

  • Mutations in ~54 genes have been shown to cause human CAKUT, contributing to 12–20% of the aetiology of the disease.

  • Other genetic causes of CAKUT include pathogenic copy number variants, which have been detected in 4–11% of patients; gene–environment interactions and epigenetic factors also contribute to the pathogenesis of the disease.

  • The discovery of monogenic human CAKUT genes has led to the understanding that defects in nephrogenesis arise from dysregulated signalling and that disruption of genes that regulate bladder innervation leads to bladder dysfunction and subsequent upper urinary tract anomalies.

  • Next-generation sequencing technologies and artificial intelligence approaches can facilitate the discovery of potential novel CAKUT-causing genes.

  • Knowledge of the genetic cause of CAKUT in individual patients can help to guide their clinical management and enables exploration of potential novel therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mammalian nephrogenesis.
Fig. 2: Signalling molecules and pathways in nephrogenesis that have been implicated in the pathogenesis of CAKUT.
Fig. 3: Monogenic causes of bladder dysfunction.
Fig. 4: Decision-making for calling a variant identified from exome sequencing as likely to cause disease.

References

  1. van der Ven, A. T., Vivante, A. & Hildebrandt, F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 36–50 (2018).

    Article  PubMed  Google Scholar 

  2. Vivante, A., Kohl, S., Hwang, D. Y., Dworschak, G. C. & Hildebrandt, F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr. Nephrol. 29, 695–704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanna-Cherchi, S., Westland, R., Ghiggeri, G. M. & Gharavi, A. G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Invest. 128, 4–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schulman, J., Edmonds, L. D., McClearn, A. B., Jensvold, N. & Shaw, G. M. Surveillance for and comparison of birth defect prevalences in two geographic areas — United States, 1983–88. MMWR CDC Surveill. Summ. 42, 1–7 (1993).

    CAS  PubMed  Google Scholar 

  5. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H. & Knoers, N. V. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 11, 720–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Loane, M. et al. Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res. A Clin. Mol. Teratol. 91, S31–S43 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, T., Mandell, J. & Lebowitz, R. L. Neonatal hydronephrosis in the era of sonography. AJR Am. J. Roentgenol. 148, 959–963 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Ramanathan, S. et al. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract. World J. Radiol. 8, 132–141 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ichikawa, I., Kuwayama, F., Pope, J. C. T., Stephens, F. D. & Miyazaki, Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 61, 889–898 (2002).

    Article  PubMed  Google Scholar 

  12. Schreuder, M. F., Westland, R. & van Wijk, J. A. Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol. Dial. Transpl. 24, 1810–1818 (2009).

    Article  Google Scholar 

  13. Lindner, T. H. et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum. Mol. Genet. 8, 2001–2008 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 9, 358–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seltzsam, S. et al. Reverse phenotyping facilitates disease allele calling in exome sequencing of patients with CAKUT. Genet. Med. 24, 307–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. San Agustin, J. T. et al. Genetic link between renal birth defects and congenital heart disease. Nat. Commun. 7, 11103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Limwongse, C. Syndromes and malformations of the urinary tract. In Pediatric Nephrology 6th edn. (eds Avner, E., Harmon, W., Niaudet, P. & Yoshikawa, N.) 122–138 (Springer, 2009).

  19. Davies, J. A. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat. 156, 187–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Khan, K. et al. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int. 101, 473–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Viswanathan, A. et al. Screening of renal anomalies in first-degree relatives of children diagnosed with non-syndromic congenital anomalies of kidney and urinary tract. Clin. Exp. Nephrol. 25, 184–190 (2021).

    Article  PubMed  Google Scholar 

  22. Kohl, S. et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 25, 1917–1922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vivante, A. et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am. J. Hum. Genet. 97, 291–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vivante, A. et al. A dominant mutation in nuclear receptor interacting protein 1 causes urinary tract malformations via dysregulation of retinoic acid signaling. J. Am. Soc. Nephrol. 28, 2364–2376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gribouval, O. et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kaefer, M. et al. Sibling vesicoureteral reflux in multiple gestation births. Pediatrics 105, 800–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Woroniecki, R., Gaikwad, A. B. & Susztak, K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr. Nephrol. 26, 705–711 (2011).

    Article  PubMed  Google Scholar 

  28. Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1429–1433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bekheirnia, M. R. et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet. Med. 19, 412–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Ishiwa, S. et al. Association between the clinical presentation of congenital anomalies of the kidney and urinary tract (CAKUT) and gene mutations: an analysis of 66 patients at a single institution. Pediatr. Nephrol. 34, 1457–1464 (2019).

    Article  PubMed  Google Scholar 

  31. Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol. 17, 2864–2870 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Nicolaou, N. et al. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int. 89, 476–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Schulze, T. G. & McMahon, F. J. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum. Hered. 58, 131–138 (2004).

    Article  PubMed  Google Scholar 

  34. Becherucci, F., Landini, S., Cirillo, L., Mazzinghi, B. & Romagnani, P. Look alike, sound alike: phenocopies in steroid-resistant nephrotic syndrome. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17228363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Landini, S. et al. Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 15, 89–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. de Goede, C. et al. Role of reverse phenotyping in interpretation of next generation sequencing data and a review of INPP5E related disorders. Eur. J. Paediatr. Neurol. 20, 286–295 (2016).

    Article  PubMed  Google Scholar 

  37. Vivante, A. et al. Exome sequencing discerns syndromes in patients from consanguineous families with congenital anomalies of the kidneys and urinary tract. J. Am. Soc. Nephrol. 28, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Ahn, Y. H. et al. Targeted exome sequencing provided comprehensive genetic diagnosis of congenital anomalies of the kidney and urinary tract. J. Clin. Med. https://doi.org/10.3390/jcm9030751 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen, Y. Z. et al. Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin. Med. J. 123, 3326–3333 (2010).

    CAS  PubMed  Google Scholar 

  40. Sanna-Cherchi, S. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 91, 987–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verbitsky, M. et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat. Genet. 51, 117–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Westland, R. et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int. 88, 1402–1410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai, M. et al. Detection of copy number disorders associated with congenital anomalies of the kidney and urinary tract in fetuses via single nucleotide polymorphism arrays. J. Clin. Lab. Anal. 34, e23025 (2020).

    Article  PubMed  Google Scholar 

  44. Caruana, G. et al. Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 30, 487–495 (2015).

    Article  PubMed  Google Scholar 

  45. Parikh, C. R., McCall, D., Engelman, C. & Schrier, R. W. Congenital renal agenesis: case-control analysis of birth characteristics. Am. J. Kidney Dis. 39, 689–694 (2002).

    Article  PubMed  Google Scholar 

  46. Hsu, C. W., Yamamoto, K. T., Henry, R. K., De Roos, A. J. & Flynn, J. T. Prenatal risk factors for childhood CKD. J. Am. Soc. Nephrol. 25, 2105–2111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dart, A. B., Ruth, C. A., Sellers, E. A., Au, W. & Dean, H. J. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am. J. Kidney Dis. 65, 684–691 (2015).

    Article  PubMed  Google Scholar 

  48. Nishiyama, K. et al. Maternal chronic disease and congenital anomalies of the kidney and urinary tract in offspring: a Japanese Cohort Study. Am. J. Kidney Dis. 80, 619–628 e611 (2022).

    Article  PubMed  Google Scholar 

  49. Barr, M. Jr & Cohen, M. M. Jr ACE inhibitor fetopathy and hypocalvaria: the kidney-skull connection. Teratology 44, 485–495 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Martinovic, J., Benachi, A., Laurent, N., Daikha-Dahmane, F. & Gubler, M. C. Fetal toxic effects and angiotensin-II-receptor antagonists. Lancet 358, 241–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Groen In ‘t Woud, S. et al. Maternal risk factors involved in specific congenital anomalies of the kidney and urinary tract: a case-control study. Birth Defects Res. A Clin. Mol. Teratol. 106, 596–603 (2016).

    Article  PubMed  Google Scholar 

  52. Hoppe, C. C., Evans, R. G., Bertram, J. F. & Moritz, K. M. Effects of dietary protein restriction on nephron number in the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1768–R1774 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Rothman, K. J. et al. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 333, 1369–1373 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Zomerdijk, I. M. et al. Isotretinoin exposure during pregnancy: a population-based study in The Netherlands. BMJ Open 4, e005602 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wilson, J. G. & Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 83, 357–407 (1948).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, L. M. et al. A paradoxical teratogenic mechanism for retinoic acid. Proc. Natl Acad. Sci. USA 109, 13668–13673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Batourina, E. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat. Genet. 32, 109–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27, 74–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Batourina, E. et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat. Genet. 37, 1082–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Zheng, B. et al. A truncating NRIP1 variant in an Arabic family with congenital anomalies of the kidneys and urinary tract. Am. J. Med. Genet. A 188, 310–313 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Connaughton, D. M. et al. Mutations of the transcriptional corepressor ZMYM2 cause syndromic urinary tract malformations. Am. J. Hum. Genet. 107, 727–742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marrone, A. K. & Ho, J. MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr. Nephrol. 29, 565–574 (2014).

    Article  PubMed  Google Scholar 

  63. Bartram, M. P. et al. Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT). J. Mol. Med. 91, 739–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Pastorelli, L. M. et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm. Genome 20, 140–151 (2009).

    Article  PubMed  Google Scholar 

  66. Kohl, S. et al. Targeted sequencing of 96 renal developmental microRNAs in 1213 individuals from 980 families with congenital anomalies of the kidney and urinary tract. Nephrol. Dial. Transpl. 31, 1280–1283 (2016).

    Article  CAS  Google Scholar 

  67. Mitrovic, K. et al. Identification and functional interpretation of miRNAs affected by rare CNVs in CAKUT. Sci. Rep. 12, 17746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin, M. et al. Genomic and epigenomic analyses of monozygotic twins discordant for congenital renal agenesis. Am. J. Kidney Dis. 64, 119–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, H. et al. Disruption of Gen1 causes congenital anomalies of the kidney and urinary tract in mice. Int. J. Biol. Sci. 14, 10–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y. et al. Disruption of Gen1 causes ectopic budding and kidney hypoplasia in mice. Biochem. Biophys. Res. Commun. 589, 173–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, X. et al. Gen1 mutation caused kidney hypoplasia and defective ureter-bladder connections in mice. Int. J. Biol. Sci. 16, 1640–1647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vaquero, M. et al. Sprouty1 controls genitourinary development via its N-terminal tyrosine. J. Am. Soc. Nephrol. 30, 1398–1411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neirijnck, Y. et al. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int. 93, 1142–1153 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Weiss, A. C. et al. Delayed onset of smooth muscle cell differentiation leads to hydroureter formation in mice with conditional loss of the zinc finger transcription factor gene Gata2 in the ureteric mesenchyme. J. Pathol. 248, 452–463 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Racetin, A. et al. A homozygous Dab1−/− is a potential novel cause of autosomal recessive congenital anomalies of the mice kidney and urinary tract. Biomolecules https://doi.org/10.3390/biom11040609 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lindstrom, N. O. et al. Conserved and divergent features of human and mouse kidney organogenesis. J. Am. Soc. Nephrol. 29, 785–805 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schnell, J., Achieng, M. & Lindstrom, N. O. Principles of human and mouse nephron development. Nat. Rev. Nephrol. 18, 628–642 (2022).

    Article  PubMed  Google Scholar 

  78. Clissold, R. L., Hamilton, A. J., Hattersley, A. T., Ellard, S. & Bingham, C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat. Rev. Nephrol. 11, 102–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Kagan, M., Pleniceanu, O. & Vivante, A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 37, 2231–2243 (2022).

    Article  PubMed  Google Scholar 

  80. Barbacci, E. et al. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 126, 4795–4805 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Coffinier, C., Thepot, D., Babinet, C., Yaniv, M. & Barra, J. Essential role for the homeoprotein vHNF1/HNF1β in visceral endoderm differentiation. Development 126, 4785–4794 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO J. 23, 1657–1668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Niborski, L. L. et al. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis. Model. Mech. https://doi.org/10.1242/dmm.047498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lu, W., Bush, K. T. & Nigam, S. K. in Kidney Development, Disease, Repair and Regeneration Ch. 18, 209–227 (Academic Press, 2016).

  85. Short, K. M. & Smyth, I. M. The contribution of branching morphogenesis to kidney development and disease. Nat. Rev. Nephrol. 12, 754–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Gill, P. S. & Rosenblum, N. D. Control of murine kidney development by sonic hedgehog and its GLI effectors. Cell Cycle 5, 1426–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chi, L. et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 131, 3345–3356 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Reidy, K. J. & Rosenblum, N. D. Cell and molecular biology of kidney development. Semin. Nephrol. 29, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wozney, J. M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. Qiao, J. et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126, 547–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124, 4077–4087 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Schuchardt, A., D’Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Enomoto, H. et al. GFRα-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ivanchuk, S. M., Myers, S. M., Eng, C. & Mulligan, L. M. De novo mutation of GDNF, ligand for the RET/GDNFR-α receptor complex, in Hirschsprung disease. Hum. Mol. Genet. 5, 2023–2026 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Jeanpierre, C. et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J. Med. Genet. 48, 497–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Angrist, M., Bolk, S., Halushka, M., Lapchak, P. A. & Chakravarti, A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat. Genet. 14, 341–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Borrego, S. et al. Investigation of germline GFRA4 mutations and evaluation of the involvement of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J. Med. Genet. 40, e18 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arora, V. et al. Biallelic pathogenic GFRA1 variants cause autosomal recessive bilateral renal agenesis. J. Am. Soc. Nephrol. 32, 223–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Al-Hamed, M. H. et al. Missense variants in GFRA1 and NPNT are associated with congenital anomalies of the kidney and urinary tract. Genes https://doi.org/10.3390/genes13101687 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Schedl, A. & Hastie, N. D. Cross-talk in kidney development. Curr. Opin. Genet. Dev. 10, 543–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Nie, X., Xu, J., El-Hashash, A. & Xu, P. X. Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev. Biol. 352, 141–151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kiefer, S. M. et al. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 137, 3099–3106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Patterson, L. T., Pembaur, M. & Potter, S. S. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. Development 128, 2153–2161 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Wellik, D. M., Hawkes, P. J. & Capecchi, M. R. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 16, 1423–1432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saygili, S. et al. A homozygous HOXA11 variation as a potential novel cause of autosomal recessive congenital anomalies of the kidney and urinary tract. Clin. Genet. 98, 390–395 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, W. et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hwang, D. Y. et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum. Genet. 134, 905–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rasmussen, M. et al. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin. Genet. 93, 860–869 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Munch, J. et al. Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney Int. 101, 1039–1053 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Weisschuh, N., Wolf, C., Wissinger, B. & Gramer, E. A novel mutation in the FOXC1 gene in a family with Axenfeld-Rieger syndrome and Peters’ anomaly. Clin. Genet. 74, 476–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, C. W. et al. Phenotype expansion of heterozygous FOXC1 pathogenic variants toward involvement of congenital anomalies of the kidneys and urinary tract (CAKUT). Genet. Med. 22, 1673–1681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones, G. E. et al. Renal anomalies and lymphedema distichiasis syndrome. A rare association? Am. J. Med. Genet. A 173, 2251–2256 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Stankiewicz, P. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84, 780–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Kume, T., Deng, K. & Hogan, B. L. Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2. Mol. Cell Biol. 20, 1419–1425 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Prowse, D. M. et al. Ectopic expression of the nude gene induces hyperproliferation and defects in differentiation: implications for the self-renewal of cutaneous epithelia. Dev. Biol. 212, 54–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Blomqvist, S. R. et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J. Clin. Invest. 113, 1560–1570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zheng, B. et al. Whole-exome sequencing identifies FOXL2, FOXA2 and FOXA3 as candidate genes for monogenic congenital anomalies of the kidneys and urinary tract. Nephrol. Dial. Transpl. 37, 1833–1843 (2022).

    Article  CAS  Google Scholar 

  123. Genga, R. M. J. et al. Single-cell RNA-sequencing-based CRISPRi screening resolves molecular drivers of early human endoderm development. Cell Rep. 27, 708–718 e710 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A. & Kim, S. K. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8, 335–346 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. McGregor, L. et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 34, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Slavotinek, A. M. et al. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J. Med. Genet. 48, 375–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Jadeja, S. et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat. Genet. 37, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Takamiya, K. et al. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Kiyozumi, D., Sugimoto, N. & Sekiguchi, K. Breakdown of the reciprocal stabilization of QBRICK/Frem1, Fras1, and Frem2 at the basement membrane provokes Fraser syndrome-like defects. Proc. Natl Acad. Sci. USA 103, 11981–11986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van der Ven, A. T. et al. A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux. PLoS One 13, e0191224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Al-Hamed, M. H. et al. A null founder variant in NPNT, encoding nephronectin, causes autosomal recessive renal agenesis. Clin. Genet. 102, 61–65 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Kuo, D. S., Labelle-Dumais, C. & Gould, D. B. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum. Mol. Genet. 21, R97–R110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kitzler, T. M. et al. COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans. Hum. Genet. 138, 1105–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Rosenberger, G. & Kutsche, K. αPIX and βPIX and their role in focal adhesion formation. Eur. J. Cell Biol. 85, 265–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Filipenko, N. R., Attwell, S., Roskelley, C. & Dedhar, S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 24, 5837–5849 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Muller, U. et al. Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88, 603–613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Humbert, C. et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu, W. et al. β1-integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. Am. J. Physiol. Renal Physiol. 297, F210–F217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Klambt, V. et al. Genetic variants in ARHGEF6 cause congenital anomalies of the kidneys and urinary tract in humans, mice, and frogs. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2022010050 (2022).

    Article  Google Scholar 

  144. Chevalier, R. L., Thornhill, B. A., Forbes, M. S. & Kiley, S. C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 25, 687–697 (2010).

    Article  PubMed  Google Scholar 

  145. Weber, S. et al. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am. J. Hum. Genet. 89, 668–674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Halim, D. et al. Loss-of-function variants in MYLK cause recessive megacystis microcolon intestinal hypoperistalsis syndrome. Am. J. Hum. Genet. 101, 123–129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wangler, M. F. et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet. 10, e1004258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gauthier, J. et al. A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur. J. Hum. Genet. 23, 1266–1268 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Milewicz, D. M. et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am. J. Med. Genet. A 152A, 2437–2443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Daly, S. B. et al. Mutations in HPSE2 cause urofacial syndrome. Am. J. Hum. Genet. 86, 963–969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Roberts, N. A. et al. Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int. 95, 1138–1152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stuart, H. M. et al. LRIG2 mutations cause urofacial syndrome. Am. J. Hum. Genet. 92, 259–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mann, N. et al. CAKUT and autonomic dysfunction caused by acetylcholine receptor mutations. Am. J. Hum. Genet. 105, 1286–1293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. D’Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21, 1504–1514 (2018).

    Article  PubMed  Google Scholar 

  155. Lifton, R. P. Individual genomes on the horizon. N. Engl. J. Med. 362, 1235–1236 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Chan, A. J. S. et al. Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder. Nat. Commun. 13, 6463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Morton, S. U. et al. Genome-wide de novo variants in congenital heart disease are not associated with maternal diabetes or obesity. Circ. Genom. Precis. Med. 15, e003500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dong, S. et al. Noncoding rare variants of TBX6 in congenital anomalies of the kidney and urinary tract. Mol. Genet. Genom. 294, 493–500 (2019).

    Article  CAS  Google Scholar 

  159. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin. J. Am. Soc. Nephrol. 5, 1079–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Setty, S. T., Scott-Boyer, M. P., Cuppens, T. & Droit, A. New developments and possibilities in reanalysis and reinterpretation of whole exome sequencing datasets for unsolved rare diseases using machine learning approaches. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23126792 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20, 1054–1060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Nitsch, D., Goncalves, J. P., Ojeda, F., de Moor, B. & Moreau, Y. Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinforma. 11, 460 (2010).

    Article  Google Scholar 

  164. Islam, M. A., Majumder, M. Z. H. & Hussein, M. A. Chronic kidney disease prediction based on machine learning algorithms. J. Pathol. Inf. 14, 100189 (2023).

    Article  Google Scholar 

  165. Bai, Q., Su, C., Tang, W. & Li, Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci. Rep. 12, 8377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. South, S. T. et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 15, 901–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Muramatsu, K. & Muramatsu, S. I. Adeno-associated virus vector-based gene therapies for pediatric diseases. Pediatr. Neonatol. https://doi.org/10.1016/j.pedneo.2022.09.004 (2022).

    Article  PubMed  Google Scholar 

  169. Pupo, A. et al. AAV vectors: the Rubik’s cube of human gene therapy. Mol. Ther. https://doi.org/10.1016/j.ymthe.2022.09.015 (2022).

    Article  PubMed  Google Scholar 

  170. Rubin, J. D. & Barry, M. A. Improving molecular therapy in the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. George, L. A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ding, W. Investigating Adeno-Associated Virus as a Vector for Gene Therapy for Steroid Resistant Nephrotic Syndrome, PhD thesis, University of Bristol, (2019).

  174. Aguti, S., Marrosu, E., Muntoni, F. & Zhou, H. Gapmer antisense oligonucleotides to selectively suppress the mutant allele in COL6A genes in dominant Ullrich congenital muscular dystrophy. Methods Mol. Biol. 2176, 221–230 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Xue, K. & MacLaren, R. E. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert. Opin. Investig. Drugs 29, 1163–1170 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science https://doi.org/10.1126/science.aau0629 (2019).

    Article  PubMed  Google Scholar 

  178. Carroll, M. S. & Giacca, M. CRISPR activation and interference as investigative tools in the cardiovascular system. Int. J. Biochem. Cell Biol. 155, 106348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Dong, K. et al. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat. Genet. 53, 1649–1663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kamath, B. M., Spinner, N. B. & Rosenblum, N. D. Renal involvement and the role of Notch signalling in Alagille syndrome. Nat. Rev. Nephrol. 9, 409–418 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.M.K.’s work is supported by a grant from the German Research Foundation (DFG, KO 6579/2-1 (708037 - 809683); 499462148). F.H. is the William E. Harmon Professor of Paediatrics. His work is also supported by the Begg Family Foundation. The authors’ work was additionally supported by grants from the National Institutes of Health to F.H. (DK076683, DK088767 and DK068306).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Norman Rosenblum, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Crispants

A F0 mutant generated using the CRISPR/Cas9 genome editing approach.

Epigenetic modulators

Factors that modify chromatin accessibility without introducing changes in DNA sequence.

Machine learning

An artificial intelligence approach in which computers are trained to learn and analyse based on data already available.

Phenotypic expansion

The occurrence of additional phenotypes that had not previously been described in a defined syndrome.

Recurrent CNVs

CNVs that occur in the same genomic locations.

Variant calling

Identification of DNA changes in sequencing data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolvenbach, C.M., Shril, S. & Hildebrandt, F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 19, 709–720 (2023). https://doi.org/10.1038/s41581-023-00742-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00742-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing