Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Challenges and directions in studying cell–cell communication by extracellular vesicles

Abstract

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. They have important roles in numerous physiological and pathological processes, and show considerable promise as novel biomarkers of disease, as therapeutic agents and as drug delivery vehicles. Intriguingly, however, understanding of the cellular and molecular mechanisms that govern the many observed functions of EVs remains far from comprehensive, at least partly due to technical challenges in working with these small messengers. Here, we highlight areas of consensus as well as contentious issues in our understanding of the intracellular and intercellular journey of EVs: from biogenesis, release and dynamics in the extracellular space, to interaction with and uptake by recipient cells. We define knowledge gaps, identify key questions and challenges, and make recommendations on how to address these.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State of the art of EV biogenesis and dissemination in the extracellular space.
Fig. 2: The dynamics of EVs in extracellular space leading to their uptake and functions in recipient cells.
Fig. 3: Key questions and challenges in studying EV biology.

Similar content being viewed by others

References

  1. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  2. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  4. Tkach, M., Kowal, J. & Thery, C. Why the need and how to approach the functional diversity of extracellular vesicles. Phil. Trans. R. Soc. B 373, 20160479 (2018).

    Article  PubMed  Google Scholar 

  5. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Russell, A. E. et al. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. J. Extracell. Vesicles 8, 1684862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013).

    CAS  PubMed  Google Scholar 

  9. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thom, S. R. et al. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J. Biol. Chem. 292, 18312–18324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wehman, A. M., Poggioli, C., Schweinsberg, P., Grant, B. D. & Nance, J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr. Biol. 21, 1951–1959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anand, S. et al. Arrestin-domain containing protein 1 (Arrdc1) regulates the protein cargo and release of extracellular vesicles. Proteomics 18, e1800266 (2018).

    Article  PubMed  Google Scholar 

  15. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, X. M., Ma, L. & Schekman, R. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 10, e71982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Groot, M. & Lee, H. Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells 9, 1044 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  19. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashley, J. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172, 262–274.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khvorova, A., Kwak, Y. G., Tamkun, M., Majerfeld, I. & Yarus, M. RNAs that bind and change the permeability of phospholipid membranes. Proc. Natl Acad. Sci. USA 96, 10649–10654 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Hessvik, N. P. et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol. Life Sci. 73, 4717–4737 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leidal, A. M. & Debnath, J. Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. FASEB Bioadv. 3, 377–386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murrow, L., Malhotra, R. & Debnath, J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Becot, A., Volgers, C. & van Niel, G. Transmissible endosomal intoxication: a balance between exosomes and lysosomes at the basis of intercellular amyloid propagation. Biomedicines 8, 272 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  30. Mobius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010). This study employed a medium-throughput RNA interference screen for RAB GTPases to reveal the involvement of RAB27 in exosome secretion, providing further evidence that exosomes derive from secretory multivesicular endosomes.

    Article  CAS  PubMed  Google Scholar 

  32. Delevoye, C., Marks, M. S. & Raposo, G. Lysosome-related organelles as functional adaptations of the endolysosomal system. Curr. Opin. Cell Biol. 59, 147–158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmulli, R. & van Niel, G. To be or not to be … secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 62, 177–191 (2018).

    Article  PubMed  Google Scholar 

  34. Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10, 1528–1542 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Verweij, F. J. et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol. 217, 1129–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savina, A., Furlan, M., Vidal, M. & Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083–20090 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Rilla, K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J. Extracell. Vesicles 10, e12148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rilla, K. et al. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 75-76, 201–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Sung, B. H. et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11, 2092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clancy, J. W., Schmidtmann, M. & D’Souza-Schorey, C. The ins and outs of microvesicles. FASEB Bioadv. 3, 399–406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  PubMed  Google Scholar 

  43. Mittelbrunn, M., Vicente Manzanares, M. & Sanchez-Madrid, F. Organizing polarized delivery of exosomes at synapses. Traffic 16, 327–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adams, S. D. et al. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr. Biol. 31, 1403–1416.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hurbain, I. et al. Microvilli-derived extracellular vesicles govern morphogenesis in Drosophila wing epithelium. Preprint at bioRxiv https://doi.org/10.1101/2020.11.01.363697 (2020).

    Article  Google Scholar 

  48. Mu, W., Rana, S. & Zoller, M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15, 875–887 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lewin, S., Hunt, S. & Lambert, D. W. Extracellular vesicles and the extracellular matrix: a new paradigm or old news? Biochem. Soc. Trans. 48, 2335–2345 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, G. M., Johnstone, B., Jacobson, K. & Caterson, B. The dynamic structure of the pericellular matrix on living cells. J. Cell Biol. 123, 1899–1907 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Zieske, J. D., Hutcheon, A. E. K. & Guo, X. Extracellular vesicles and cell-cell communication in the cornea. Anat. Rec. 303, 1727–1734 (2020).

    Article  CAS  Google Scholar 

  52. Edgar, J. R., Manna, P. T., Nishimura, S., Banting, G. & Robinson, M. S. Tetherin is an exosomal tether. eLife 5, e17180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nawaz, M. et al. Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 7, 167 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  54. Sedgwick, A. E., Clancy, J. W., Olivia Balmert, M. & D’Souza-Schorey, C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci. Rep. 5, 14748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G. & Karamanos, Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells 9, 851 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  56. Lin, Y. et al. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J. Extracell. Vesicles 9, 1722385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghoroghi, S. et al. Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. eLife 10, e61539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Verweij, F. J. et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev. Cell 48, 573–589.e4 (2019). First in vivo model using zebrafish embryos to live-track the production, journey, fate and potential function of single exosomes.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshimura, A. et al. Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci. Rep. 6, 31172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ridder, K. et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4, e1008371 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zomer, A. et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morishita, M., Takahashi, Y., Nishikawa, M. & Takakura, Y. Pharmacokinetics of exosomes-an important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics. J. Pharm. Sci. 106, 2265–2269 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Emam, S. E. et al. Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues. Eur. J. Pharm. Biopharm. 145, 27–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, D. et al. Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat. Commun. 10, 3854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015). This study showed that exosomal integrins have a key role in directing exosomes from cancer cells to particular organs and that this transfer induces metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Buzas, E. I., Toth, E. A., Sodar, B. W. & Szabo-Taylor, K. E. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 40, 453–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaur, S., Elkahloun, A. G., Singh, S. P., Arakelyan, A. & Roberts, D. D. A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells. J. Cell Commun. Signal. 12, 157–170 (2018).

    Article  PubMed  Google Scholar 

  73. Toth, E. A. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berenguer, J. et al. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. J. Extracell. Vesicles 7, 1446660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Reshke, R. et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat. Biomed. Eng. 4, 52–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, T., Wang, Y., Wang, H., Zhu, Z. & Xiao, Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell Biochem. 111, 488–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Yao, Z. et al. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity. J. Virol. 92, e01578-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Costafreda, M. I., Abbasi, A., Lu, H. & Kaplan, G. Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection. Nat. Microbiol. 5, 1096–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Joshi, B. S., de Beer, M. A., Giepmans, B. N. G. & Zuhorn, I. S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 14, 4444–4455 (2020). This study reported that a fraction of internalized EVs fuses with the limiting membrane of endosomes/lysosomes in an acidification-dependent manner, which results in EV cargo exposure to the cell cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonsergent, E. & Lavieu, G. Content release of extracellular vesicles in a cell-free extract. FEBS Lett. 593, 1983–1992 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Ramirez, M. I. et al. Technical challenges of working with extracellular vesicles. Nanoscale 10, 881–906 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Royo, F., Thery, C., Falcon-Perez, J. M., Nieuwland, R. & Witwer, K. W. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells 9, 1955 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  83. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Arab, T. et al. Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J. Extracell. Vesicles 10, e12079 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gorgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tian, Y. et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 12, 671–680 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Daaboul, G. G. et al. Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chuo, S. T., Chien, J. C. & Lai, C. P. Imaging extracellular vesicles: current and emerging methods. J. Biomed. Sci. 25, 91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Witwer, K. W. & Thery, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Consortium, E.-T. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Article  Google Scholar 

  91. Wiklander, O. P. B., Brennan, M. A., Lotvall, J., Breakefield, X. O. & El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl Med. 11, eaav8521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tricarico, C., Clancy, J. & D’Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases 8, 220–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172, 275–288.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nicolas-Avila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K. & Poon, I. K. H. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell. Biochem. 97, 61–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Jang, S. C. et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun. Biol. 4, 497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3, e99263 (2018).

    Article  PubMed Central  Google Scholar 

  100. Tang, K. et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun. 3, 1282 (2012).

    Article  PubMed  Google Scholar 

  101. Guo, M. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl Med. 11, eaat5690 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of G.v.N. and A.C. is supported by proEVLifeCycle funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 860303. The work of G.v.N. is also supported by the Fondation ARC (#PGA1RF20190208474). D.R.F.C. was supported by the BBSRC (BB/P006205/1). G.R. is supported by Fondation pour la Recherche Medicale Espoirs de la Recherche (FRM 2020-2023), CNRS and Institut Curie. P.V. acknowledges support from the European Research Council (ERC) (ERC Starting grant OBSERVE #851936) and the Netherlands Organization for Scientific Research (NWO) (NWO Vidi grant #18367).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. G.v.N. designed the figures.

Corresponding authors

Correspondence to Guillaume van Niel or Pieter Vader.

Ethics declarations

Competing interests

D.R.F.C. is an employee of Evox Therapeutics. P.V. serves on the scientific advisory board of Evox Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks An Hendrix and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EV-TRACK: https://www.evtrack.org/

Glossary

Oncosomes

Large extracellular vesicles generated from the plasma membrane of cancer cells.

ESCRT machinery

Protein machinery composed of several multiprotein subcomplexes that enable membrane remodelling at endosomes, plasma membrane or nuclear envelope resulting in membrane budding.

Syntenin–Alix pathway

Alternative sorting mechanism at endosomes to generate intraluminal vesicles that shortcuts the first subunits of the ESCRT machinery.

Tetraspanins

Family of transmembrane proteins that are enriched in various subtypes of extracellular vesicles and are characterized by their capacity to associate into dynamic membrane microdomains.

Arrestin domain-containing protein 1

(ARRDC1). Protein adaptor for the NEDD4 family of ubiquitin ligases that is involved in the generation of extracellular vesicles at the plasma membrane.

MHC II

Transmembrane protein heterocomplex expressed by antigen-presenting cells that present antigenic peptides to T cell receptors.

Syndecan

Single transmembrane domain protein that is thought to act as co-receptor, especially for G protein-coupled receptors, and is known to engage the syntenin–Alix pathway for sorting to exosomes.

Microautophagy

Sorting process occurring at the late endosome or lysosome to engulf cytoplasm and cytosolic proteins into intraluminal vesicles.

Processing bodies

Distinct foci consisting of many enzymes and nucleic acids, formed by phase separation within the cytoplasm of the eukaryotic cell and primarily involved in mRNA turnover.

Retraction fibres

Membrane-elongated structures generated at the rear of migratory cells connecting the adhesion pattern to the round cell body.

Amphisomes

Chimeric organelle resulting from the fusion of autophagosomes and multivesicular endosomes.

Macroautophagy

Intracellular process leading to the specific enwrapping of cytosolic material and organelles by membranes to target them to lysosomes for degradation.

Filopodia

Cytoplasmic projections that extend beyond the leading edge of migrating cells.

Microvilli

Membrane protrusions, primarily generated in epithelia, involved in absorption, secretion and adhesion.

Nanotubes

Membrane-elongated structures connecting two cells.

Glycocalyx

Set of glycolipids and glycoproteins present on the extracellular surface.

BAR domain

Highly conserved protein dimerization domain displaying a banana shape that preferentially binds to curved membranes and sustains membrane deformation and traffic.

Ceramide

Sphingolipid that induces inward budding of endosomes to produce intraluminal vesicles in an ESCRT-independent manner.

Matrix vesicles

(MVs). Extracellular spherical bodies selectively located in the pre-mineralized matrix of cartilage, bone and dentin.

Proteoglycan

A family of ubiquitous, heavily glycosylated proteins that function as critical components of the extracellular matrix.

Tetherin

Lipid raft-associated integral membrane protein that tethers virus-like particles and exosomes, thereby inhibiting them from discharging into the extracellular milieu.

Lysyl oxidase

(LOX). Enzyme that induces crosslinking of extracellular matrix proteins by converting lysine molecules into highly reactive aldehydes.

Transglutaminase

(TG). Enzyme that induces crosslinking of extracellular matrix proteins by generating isopeptide bonds.

Invadopodia

Specialized actin-rich membrane protrusions that concentrate high proteolytic activities and are capable of crossing extracellular barriers.

Integumentary system

Organ system forming the outermost layer of an animal’s body and includes skin, hair, nails and exocrine glands.

Phosphatidylserine

(PS). Phospholipid commonly found in the inner leaflet of biological membranes, which gets exposed on the surface of apoptotic cells and is used by viruses and extracellular vesicles to enter cells via apoptotic mimicry.

Complement

System of plasma proteins that, upon activation, leads to opsonization and engulfment of pathogens as part of the innate immune system.

Macropinocytosis

Regulated form of endocytosis that involves non-selective uptake of extracellular material.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Niel, G., Carter, D.R.F., Clayton, A. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 23, 369–382 (2022). https://doi.org/10.1038/s41580-022-00460-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00460-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing