Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture

Abstract

Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant–microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary shifts in Trichoderma ecophysiology.
Fig. 2: Trichoderma as a direct biological control agent.
Fig. 3: Trichoderma as an indirect biological control agent, biostimulant and priming inducer.
Fig. 4: Overview of the (potential) contribution of Trichoderma to eco-sustainable agriculture.

Similar content being viewed by others

References

  1. Chaverri, P., Castlebury, L. A., Overton, B. E. & Samuels, G. J. Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 95, 1100–1140 (2003).

    Article  PubMed  Google Scholar 

  2. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Lorito, M., Woo, S. L., Harman, G. E. & Monte, E. Translational research on Trichoderma: from ‘omics to the field. Annu. Rev. Phytopathol. 48, 395–417 (2010). Review of early Trichoderma expressomes that have led to a better understanding of their complex interactions with other living organisms and their potential importance in agriculture and industry.

    Article  CAS  PubMed  Google Scholar 

  4. Kubicek, C. P. et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 12, R40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Druzhinina, I. S. et al. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9, 749–759 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hermosa, R., Viterbo, A., Chet, I. & Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158, 17–25 (2012). Trichoderma–plant cross-talk model showing phytohormone homeostasis in the control of plant development and immune responses.

    Article  CAS  PubMed  Google Scholar 

  7. Morán-Diez, M. E., Martínez de Alba, Á. E., Rubio, M. B., Hermosa, R. & Monte, E. Trichoderma and the plant heritable priming responses. J. Fungi 7, 318 (2021). Description of Trichoderma-induced priming stages in plants and summary of the main regulatory nodes in the transcriptional network of systemic defence and growth promotion triggered by Trichoderma.

    Article  Google Scholar 

  8. Cai, F. & Druzhinina, I. S. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 107, 1–69 (2021). Unified criteria for molecular identification and systematics of Trichoderma species.

    Article  CAS  Google Scholar 

  9. Chaverri, P. & Samuels, G. J. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67, 2823–2837 (2013).

    PubMed  Google Scholar 

  10. Druzhinina, I. S. et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14, e1007322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kubicek, C. P. et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20, 485 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vajda, V. & McLoughlin, S. Fungal proliferation at the cretaceous-tertiary boundary. Science 303, 1489 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Wen, C., Xiong, H., Wen, J., Wen, X. & Wang, C. Trichoderma species attract Coptotermes formosanus and antagonize termite pathogen Metarhizium anisopliae. Front. Microbiol. 11, 653 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubio, M. B. et al. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl. Environ. Microbiol. 80, 1864–1873 (2014). The beneficial effects of Trichoderma are more apparent in plants subjected to some type of stress; Trichoderma-induced plant phytohormone signalling follows an undulating dynamic, which decreases in amplitude with time.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vargas, W. A. et al. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology 160, 2319–2330 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Montero-Barrientos, M., Hermosa, R., Cardoza, R. E., Gutiérrez, S. & Monte, E. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77, 3009–3016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Villalobos-Escobedo, J. M. et al. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. Plant J. 103, 2178–2192 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lombardi, N. et al. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant Microbe Interact. 31, 982–994 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Mastouri, F., Björkman, T. & Harman, G. E. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol. Plant Microbe Interact. 25, 1264–1271 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Pedrero-Méndez, A. et al. Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. J. Fungi 7, 1087 (2021).

    Article  Google Scholar 

  21. Hernández-Oñate, M. A., Esquivel-Naranjo, E. U., Mendoza-Mendoza, A., Stewart, A. & Herrera-Estrella, A. H. An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc. Natl Acad. Sci. USA 109, 14918–14923 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pola-Sánchez, E. et al. A global analysis of photoreceptor-mediated transcriptional changes reveals the intricate relationship between central metabolism and DNA repair in the filamentous fungus Trichoderma atroviride. Front. Microbiol. 12, 724676 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Montero-Barrientos, M. et al. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet. Biol. 45, 1506–1513 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ruocco, M. et al. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol. Plant Microbe Interact. 22, 291–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Vinale, F. et al. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 347, 123–129 (2013).

    CAS  PubMed  Google Scholar 

  26. Sarkar, D. & Rakshit, A. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains, India. Sci. Hortic. 283, 110075 (2021).

    Article  CAS  Google Scholar 

  27. Li, R. X. et al. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10, e0130081 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A. & Melo, I. S. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci. Rep. 10, 2858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vinale, F. et al. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72, 80–86 (2008). Demonstration of the role of Trichoderma-produced secondary metabolites on the plant for biological control of pathogens, induced plant resistance and plant growth promotion.

    Article  CAS  Google Scholar 

  30. Garnica-Vergara, A. et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. N. Phytol. 209, 1496–1512 (2016).

    Article  CAS  Google Scholar 

  31. Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V. & Herrera-Estrella, A. Trichoderma species: versatile plant symbionts. Phytopathology 109, 6–16 (2019).

    Article  PubMed  Google Scholar 

  32. Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R. & Monte, E. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens 10, 991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C. & López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149, 1579–1592 (2009). Demonstration of the important role of auxin signalling in plant growth promotion by Trichoderma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pelagio-Flores, R., Esparza-Reynoso, S., Garnica-Vergara, A., López-Bucio, J. & Herrera-Estrella, A. Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Front. Plant Sci. 8, 822 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Samolski, I., Rincón, A. M., Pinzón, L. M., Viterbo, A. & Monte, E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158, 129–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Malmierca, M. G. et al. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol. Plant Microbe Interact. 28, 1181–1197 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Bae, H. et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60, 3279–3295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harman, G. E. & Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019, 9106395 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tseng, Y. H. et al. An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Front. Plant Sci. 11, 573670 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carrero-Carrón, I. et al. Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones. Plant Pathol. 67, 1758–1767 (2018).

    Article  Google Scholar 

  41. Zachow, C. et al. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J. 3, 79–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Zachow, C., Berg, C., Müller, H., Monk, J. & Berg, G. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J. Biotechnol. 235, 162–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, F. et al. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front. Microbiol. 9, 848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fiorentino, N. et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 9, 743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Illescas, M. et al. Effect of inorganic N top dressing and Trichoderma harzianum seed-inoculation on crop yield and the shaping of root microbial communities of wheat plants cultivated under high basal N fertilization. Front. Plant Sci. 11, 575861 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ros, M., Raut, I., Santisima-Trinidad, A. B. & Pascual, J. A. Relationship of microbial communities and suppressiveness of Trichoderma fortified composts for pepper seedlings infected by Phytophthora nicotianae. PLoS ONE 12, e0174069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qiao, C. et al. Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Appl. Soil Ecol. 142, 136–146 (2019).

    Article  Google Scholar 

  48. Bonanomi, G., Lorito, M., Vinale, F. & Woo, S. L. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56, 1–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. He, C. et al. Dual inoculation of dark septate endophytes and Trichoderma viride drives plant performance and rhizosphere microbiome adaptations of Astragalus mongholicus to drought. Environ. Microbiol. 24, 324–340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rousseau, A., Benhamou, N., Chet, I. & Piche, Y. Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86, 434–443 (1996).

    Article  Google Scholar 

  51. Guo, Y. et al. Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Front. Microbiol. 10, 891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cameron, D. D., Neal, A. L., van Wees, S. C. & Ton, J. Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 18, 539–545 (2013). This article reflects that mycorrhizae are not only microbial plant biostimulants but also induce plant systemic defences and might be considered indirect biological control agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buysens, C., César, V., Ferrais, F., Dupré de Boulois, H. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016).

    Article  Google Scholar 

  54. Martínez-Medina, A., Roldán, A., Albacete, A. & Pascual, J. A. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72, 223–229 (2011).

    Article  PubMed  Google Scholar 

  55. Minchev, Z., Kostenko, O., Soler, R. & Pozo, M. J. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front. Plant Sci. 12, 756368 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poveda, J., Hermosa, R., Monte, E. & Nicolás, C. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci. Rep. 9, 11650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Samuels, G., Dodd, S. L., Gams, W., Castlebury, L. A. & Petrini, O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94, 146–170 (2002).

    Article  PubMed  Google Scholar 

  58. Tijerino, A. et al. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 3, 1220–1232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kredics, L. et al. Clinical importance of the genus Trichoderma. A review. Acta Microbiol. Immunol. Hung. 50, 105–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rocha, S. L. et al. Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy. R. Soc. Open Sci. 4, 160628 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tucci, M., Ruocco, M., de Masi, L., de Palma, M. & Lorito, M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol. 12, 341–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Bazghaleh, N., Prashar, P., Woo, S. & Vanderberg, A. Effects of lentil genotype on the colonization of beneficial Trichoderma species and biocontrol of Aphanomyces root rot. Microorganisms 8, 1290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaverri, P. et al. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107, 558–590 (2015). Identification of Trichoderma strains used as active matter in commercial products, highlighting the need for re-identification of those included in patents and registrations present and future.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vos, C. M., De Cremer, K., Cammue, B. P. & De Coninck, B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol. Plant Pathol. 16, 400–412 (2015).

    Article  PubMed  Google Scholar 

  65. Vinale, F. et al. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43, 143–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Xiao-Yan, S. et al. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett. 260, 119–125 (2006).

    Article  PubMed  Google Scholar 

  67. Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. & Schuhmacher, R. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, S., Yap, M., Behringer, G., Hung, R. & Bennett, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li, N., Islam, M. T. & Kang, S. Secreted metabolite-mediated interactions between rhizosphere bacteria and Trichoderma biocontrol agents. PLoS ONE 14, e0227228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martínez-Medina, A., Van Wees, S. C. M. & Pieterse, C. M. J. Airborne signals from Trichoderma harzianum stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ. 40, 2691–21705 (2017).

    Article  PubMed  Google Scholar 

  71. Collinge, D. B. et al. Biological control of plant diseases — what has been achieved and what is the direction? Plant Pathol. 71, 1024–1047 (2022).

    Article  Google Scholar 

  72. Woo, S. L. et al. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8, 71–126 (2014). An overview of Trichoderma-based products on the global commercial market, species utilized as active substances, companies, product claims, formulations, countries where used, and registrations.

    Article  Google Scholar 

  73. Baazeem, A. et al. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites. J. Fungi 7, 331 (2021).

    Article  CAS  Google Scholar 

  74. Morán-Diez, M. E. et al. Transcriptomic analysis of Trichoderma atroviride overgrowing plant-wilting Verticillium dahliae reveals the role of a new M14 metallocarboxypeptidase CPA1 in biocontrol. Front. Microbiol. 10, 1120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mukherjee, P. K., Mendoza-Mendoza, A., Zeilinger, S. & Horwitz, B. A. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol. Rev. 39, 15–33 (2022).

    Article  CAS  Google Scholar 

  76. Zeilinger, S. et al. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol. 26, 131–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. de la Cruz, J., Pintor-Toro, J. A., Benítez, T. & Llobell, A. Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J. Bacteriol. 177, 1864–1871 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Migheli, Q., González-Candelas, L., Dealessi, L., Camponogara, A. & Ramón-Vidal, D. Transformants of Trichoderma longibrachiatum overexpressing the β-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88, 673–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Ait-Lahsen, H. et al. An antifungal exo-α-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol. 67, 5833–5839 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Djonovic, S., Pozo, M. J. & Kenerley, C. M. Tvbgn3, a β-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl. Environ. Microbiol. 72, 7661–7670 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thrane, C., Tronsmo, A. & Jensen, D. F. Endo-1,3-β-glucanase and cellulase from Trichoderma harzianum: purification and partial characterization, induction of and biological activity against plant pathogenic Pythium spp. Eur. J. Plant Pathol. 103, 331–344 (1997).

    Article  CAS  Google Scholar 

  82. Almeida, F., Cerqueira, F. M., Silva, R. D. N., Ulhoa, C. J. & Lima, A. L. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 29, 1189–1193 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Rubio, M. B., Hermosa, R., Reino, J. L., Collado, I. G. & Monte, E. The Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet. Biol. 46, 17–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Howell, C. R. & Stipanovic, R. D. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can. J. Microbiol. 29, 321–324 (1983).

    Article  CAS  Google Scholar 

  85. Bae, S.-J. et al. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control. 92, 128–138 (2016).

    Article  CAS  Google Scholar 

  86. Manganiello, G. et al. Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Front. Microbiol. 9, 1966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, R. M. & Harman, G. E. Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83, 308–313 (1993).

    Article  Google Scholar 

  88. Lace, B. et al. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride. Environ. Microbiol. Rep. 7, 64–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, H., Powell, N. T. & Barker, K. R. The influence of Trichoderma harzianum on the root-knot Fusarium wilt complex in cotton. J. Nematol. 8, 81–86 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sharon, E. et al. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur. J. Plant Pathol. 118, 247–258 (2007).

    Article  Google Scholar 

  91. Suárez, B., Rey, M., Castillo, P., Monte, E. & Llobell, A. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65, 46–55 (2004).

    Article  PubMed  Google Scholar 

  92. Sahebani, N. & Hadavi, N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil. Biol. Biochem. 40, 2016–2020 (2008).

    Article  CAS  Google Scholar 

  93. Berini, F. et al. Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera. Pest Manag. Sci. 72, 980–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. da Silveira, A. A. et al. Larvicidal potential of cell wall degrading enzymes from Trichoderma asperellum against Aedes aegypti (Diptera: Culicidae). Biotechnol. Prog. 37, e3182 (2021).

    Article  PubMed  Google Scholar 

  95. Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Rep. 9, 1108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kapat, A., Zimand, G. & Elad, Y. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol. Mol. Plant Pathol. 52, 127–137 (1999).

    Article  Google Scholar 

  97. Malmierca, M. G. et al. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth. Environ. Microbiol. 18, 3991–4004 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Contreras-Cornejo, H. A. et al. Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol. Biochem. 122, 196–202 (2018).

    Article  CAS  Google Scholar 

  99. Conrath, U., Beckers, G. J., Langenbach, C. J. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Mendoza-Mendoza, A. et al. Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol. Rev. 32, 62–85 (2018).

    Article  Google Scholar 

  101. Mathys, J. et al. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Sci. 3, 108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brotman, Y. et al. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9, e1003221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moran-Diez, E. et al. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol. Plant Microbe Interact. 22, 1021–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Hermosa, R. et al. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 16, 69–80 (2013).

    CAS  PubMed  Google Scholar 

  105. Alonso-Ramírez, A. et al. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol. Plant Pathol. 15, 823–831 (2014). Salicylic acid is key to controlling Trichoderma early root colonization as without the support of this phytohormone the plants cannot prevent the fungus from entering the vascular system and spreading to the aerial parts.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rotblat, B., Enshell-Seijffers, D., Gershoni, J. M., Schuster, S. & Avni, A. Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J. 32, 1049–1055 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Romero-Contreras, Y. J. et al. Tal6 from Trichoderma atroviride is a LysM effector involved in mycoparasitism and plant association. Front. Microbiol. 10, 2231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Djonovic, S., Pozo, M. J., Dangott, L. J., Howell, C. R. & Kenerley, C. M. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant Microbe Interact. 19, 838–853 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Engelberth, J. et al. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125, 369–377 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malmierca, M. G. et al. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ. Microbiol. 17, 2628–2646 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Malmierca, M. G. et al. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl. Environ. Microbiol. 78, 4856–4868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramírez-Valdespino, C. A., Casas-Flores, S. & Olmedo-Monfil, V. Trichoderma as a model to study effector-like molecules. Front. Microbiol. 10, 1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lamdan, N., Shalaby, S., Ziv, T., Kenerley, C. M. & Horwitz, B. A. Secretome of the biocontrol fungus Trichoderma virens co-cultured with maize roots: role in induced systemic resistance. Mol. Cell Proteom. 14, 1054–1063 (2015).

    Article  CAS  Google Scholar 

  114. Marra, R. et al. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet. 50, 307–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Shoresh, M. & Harman, G. E. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 147, 2147–2163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Shoresh, M., Yedidia, I. & Chet, I. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95, 76–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Luo, Y. et al. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol. Lett. 313, 120–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Salas-Marina, M. A. et al. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur. J. Plant Pathol. 131, 15–26 (2011).

    Article  CAS  Google Scholar 

  120. TariqJaveed, M., Farooq, T., Al-Hazmi, A. S., Hussain, M. D. & Rehman, A. U. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. J. Invertebr. Pathol. 183, 107626 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Medeiros, H. A. et al. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci. Rep. 7, 40216 (2017). Plant responses to Trichoderma are heritable in terms of both induction of defence and growth promotion, and the expression of these traits in the offspring depends on the treatment to which the parental plant was subjected.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martínez-Medina, A. et al. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. N. Phytol. 213, 1363–1377 (2017).

    Article  Google Scholar 

  123. Rebolledo-Prudencio, O. G. et al. The small RNA-mediated gene silencing machinery is required in Arabidopsis for stimulation of growth, systemic disease resistance, and suppression of the nitrile-specifier gene NSP4 by Trichoderma atroviride. Plant J. 109, 873–890 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Coppola, M. et al. Transcriptome and metabolome reprogramming in tomato plants by Trichoderma harzianum strain T22 primes and enhances defense responses against aphids. Front. Physiol. 10, 745 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Coppola, M. et al. Trichoderma atroviride P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front. Physiol. 10, 813 (2019). Demonstration of both direct and indirect biological control of sucking and chewing insects feeding on Trichoderma-treated plants.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gupta, S. et al. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. J. Exp. Bot. 72, 7229–7246 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Arnold, A. E., Praprotnik, E. & Lončar, J. Testing virulence of different species of insect associated fungi against yellow mealworm (Coleoptera: Tenebrionidae) and their potential growth stimulation to maize. Plants 10, 2498 (2021).

    Article  Google Scholar 

  128. Kaushik, N. et al. Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms 8, 420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Y. et al. Impacts on silkworm larvae midgut proteomics by transgenic Trichoderma strain and analysis of glutathione S-transferase sigma 2 gene essential for anti-stress response of silkworm larvae. J. Proteom. 126, 218–227 (2015).

    Article  CAS  Google Scholar 

  130. Battaglia, D. et al. Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Biomed. Res. Int. 26, 1249–1256 (2013).

    CAS  Google Scholar 

  131. Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E. & Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 124, 45–53 (2018).

    Article  Google Scholar 

  132. Saijo, Y. & Loo, E. P. Plant immunity in signal integration between biotic and abiotic stress responses. N. Phytol. 225, 87–104 (2020).

    Article  Google Scholar 

  133. Moscatiello, R. et al. The hydrophobin HYTLO1 secreted by the biocontrol fungus Trichoderma longibrachiatum triggers a NAADP-mediated calcium signalling pathway in Lotus japonicus. Int. J. Mol. Sci. 19, 2596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bailey, B. A. et al. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224, 1449–1464 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Mastouri, F., Björkman, T. & Harman, G. E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100, 1213–1221 (2010). Pioneering work describing that Trichoderma reduces the damage caused by ROS in the plant, resulting in the alleviation of a range of biotic, abiotic and physiological stresses.

    Article  PubMed  Google Scholar 

  136. Ghorbanpour, A., Salimi, A., Ghanbary, M. A. T., Pirdashti, H. & Dehestani, A. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci. Hortic. 230, 134–141 (2018).

    Article  Google Scholar 

  137. Zhang, S., Xu, B. & Gan, Y. Seed treatment with Trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems. Int. J. Mol. Sci. 20, 3729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rauf, M. et al. Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress. Front. Plant Sci. 11, 614971 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jalali, F., Zafari, D. & Salari, H. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 29, 67–75 (2017).

    Article  Google Scholar 

  140. Rubio, M. B. et al. The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front. Plant Sci. 8, 294 (2017). Combined applications of Trichoderma and chemical fertilizer might have positive synergistic effects for plants but overstimulation leads to dysregulation of phytohormone networking if under stress conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rivera-Méndez, W., Obregón, M., Morán-Diez, M. E., Hermosa, R. & Monte, E. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol. Control. 141, 104145 (2020).

    Article  Google Scholar 

  142. Domínguez, S. et al. Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene. Front. Microbiol. 7, 1182 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Liu, N. & Avramova, Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin 9, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Slaughter, A. et al. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction 1–182 (Food and Agriculture Organization of the United Nations, 2019).

  146. DeClerck, F. A. J. et al. A whole earth approach to nature positive food: biodiversity and agriculture. United Nations Food Systems Summit 2021 – Scientific Group 1–26 (CGIAR, 2021).

  147. Woo, S. L. & Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Carillo, P. et al. Application of Trichoderma harzianum, 6-pentyl-α-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants 9, 771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Comite, E. et al. Bioformulations with beneficial microbial consortia, a bioactive compound and plant biopolymers modulate sweet basil productivity, photosynthetic activity and metabolites. Pathogens 10, 870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lanzuise, S. et al. Combined biostimulant applications of Trichoderma spp. with fatty acid mixtures improve biocontrol activity, horticultural crop yield and nutritional quality. Agronomy 12, 275 (2022).

    Article  CAS  Google Scholar 

  151. Ons, L., Bylemans, D., Thevissen, K. & Cammue, B. P. A. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8, 1930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vinale, F. et al. Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci. Rep. 7, 14330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Karuppiah, V., Sun, J., Li, T., Vallikkannu, M. & Chen, J. Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front. Microbiol. 10, 68 (2019).

    Article  Google Scholar 

  154. Fraceto, L. F. et al. Trichoderma harzianum-based novel formulations: potential applications for management of next-gen agricultural challenges. J. Chem. Technol. Biotechnol. 93, 2056–2063 (2018).

    Article  CAS  Google Scholar 

  155. Lorito, M. et al. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl Acad. Sci. USA 95, 7860–7865 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Montero-Barrientos, M. et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J. Plant Physiol. 167, 659–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Kashyap, P. L., Rai, P., Srivastava, A. K. & Kumar, S. Trichoderma for climate resilient agriculture. World J. Microbiol. Biotechnol. 33, 155 (2017).

    Article  PubMed  Google Scholar 

  158. Zafra, G., Moreno-Montano, A., Absalon, A. E. & Cortés-Espinosa, D. V. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ. Sci. Pollut. Res. 22, 1034–1042 (2015).

    Article  CAS  Google Scholar 

  159. Robbertse, B. et al. Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case. Database 2017, 1–14 (2017).

    Article  Google Scholar 

  160. Rossman, A. Y. et al. Genera in bionectriaceae, hypocreaceae, and nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4, 41–51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize the pioneering work on Trichoderma in agriculture by I. Chet and G. E. Harman that has served as the basis for our understanding of Trichoderma today. S.L.W. and M.L. gratefully acknowledge research funding from the European Union Horizon 2020 Research and Innovation Program — ECOSTACK (grant agreement no. 773554), the Ministry of University and Research Projects of National Relevance — PRIN 2017 PROSPECT (grant number 2017JLN833), and involvement in the Ministry of University and Research for National Recovery and Resilience Plan (PNRR), National Research Center for Agricultural Technologies (AGRITECH — D.D. n.1032, 17/06/2022) and National Biodiversity Future Center (NBFC — D.D. n.1034, 17/06/2022). S.L.W. wishes to recognize her association with the National Research Council, Institute for Sustainable Plant Protection, Portici, Italy, the Task Force on Microbiome Studies, and the BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy; and thank L. Gioia, G. Manganiello, E. Comite, A. Pironti, S. Lanzuise and M. Ranesi for the technical assistance in the preparation of the manuscript. R.H. and E.M. acknowledge the support of grants co-financed by the European Regional Development Fund (FEDER) and the governments of Spain (MCIN/AEI PDI-2021-126575OB-I00) and Castile and Leon (SA094P20, Escalera de Excelencia CLU-2018-04 and IR2020-1-USAL05).

Author information

Authors and Affiliations

Authors

Contributions

S.L.W. and M.L. conceptualized the idea of this manuscript. S.L.W. and R.H. collected data, designed the content for the article, designed figures and drafted the tables. S.L.W., R.H., M.L. and E.M. contributed substantially to the discussion of the content. S.L.W. and E.M. wrote the article. All authors reviewed and edited the final version of the draft and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sheridan L. Woo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Alfredo Herrera-Estrella, Qirong Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Commission on Trichoderma Taxonomy: www.trichoderma.info

Supplementary information

Glossary

Agroecosystem

An ecosystem subjected to anthropological activities that are finalized in agricultural production involving the continuous manipulation of biotic and abiotic components to obtain maximum yields and quality of the produce such as food, textile and biofuel plant products, and animal goods.

Biofertilizers

Products that contain living organisms that promote plant growth by increasing the supply or availability of primary nutrients to the host plant.

Biological control agent

(BCA). A natural enemy or antagonistic organism used in plant protection that can inhibit or eliminate harmful organisms and their negative effects through direct or indirect mechanisms of parasitism, antibiosis, competition or induced plant defence.

Bioprotectants

Biological tools providing the protection of plants or the environment from biotic and/or abiotic stress by methods of biocontrol or bioremediation.

Biostimulant

A biological product used to improve plant nutrient use efficiency, tolerance to abiotic stress, quality traits or availability of confined nutrients in the soil by using components of microbial or non-microbial origins.

Eco-sustainable agriculture

A system that generates increasing prosperity by reducing chemical inputs and implementing alternative methods to minimize negative impacts to the environment, biodiversity, and human and animal health, thus permitting the renewal of natural resources.

Plant protection products

(PPPs). Products consisting of an approved active substance (chemical or biological) with the capacity to protect plants or plant products against harmful organisms, that positively influence the life processes of plants, preserve plant products, destroy undesired plants or parts of plants, or control or prevent undesired growth of plants.

Priming

An adaptive strategy improving plant defence capacity whereby an initial stimulus activates the physiological, transcriptional, metabolic and epigenetic mechanisms that enable the plant to respond more rapidly and/or efficiently to subsequent exposure to biotic or abiotic stress.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S.L., Hermosa, R., Lorito, M. et al. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 21, 312–326 (2023). https://doi.org/10.1038/s41579-022-00819-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00819-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology