Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacillus subtilis biofilm formation and social interactions

Abstract

Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of Bacillus subtilis biofilms in vitro.
Fig. 2: Bacillus subtilis biofilm matrix components and biosynthetic systems.
Fig. 3: Formation of Bacillus subtilis biofilms in the rhizosphere.
Fig. 4: Effects of Bacillus subtilis biofilms in the intestinal tract.
Fig. 5: Evolution of social interactions in Bacillus subtilis biofilms.

Similar content being viewed by others

References

  1. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Marzorati, M. et al. Bacillus subtilis HU58 and Bacillus coagulans SC208 probiotics reduced the effects of antibiotic-induced gut microbiome dysbiosis in an M-SHIME((R)) model. Microorganisms 8, 1028 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  4. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001). This is the first paper demonstrating the complex architecture manifested in the B. subtilis NCIB 3610 biofilm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamon, M. A. & Lazazzera, B. A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42, 1199–1209 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez-Vizuete, P. et al. Identification of ypqP as a new Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities. Appl. Environ. Microbiol. 81, 109–118 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Kjeldgaard, B. et al. Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm 1, 100007 (2019).This is the first study showing the role of the matrix components TasA and EPS in B. subtilis biofilm formation on fungal hyphae.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Noirot-Gros, M. F. et al. Functional imaging of microbial interactions with tree roots using a microfluidics setup. Front. Plant Sci. 11, 408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Camara-Almiron, J. et al. Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat. Commun. 11, 1859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kovacs, A. T. & Dragos, A. Evolved biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J. Mol. Biol. 431, 4749–4759 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010). This is the first study to identify TasA as a fibre-forming protein that is integral to biofilm formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hobley, L. et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc. Natl Acad. Sci. USA 110, 13600–13605 (2013). This paper reports the first crystal structure of BslA and demonstrates the hydrophobin-like ability of this unique protein by combining in vivo and in vitro biophysical techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi, K. & Iwano, M. BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 85, 51–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Peng, N. et al. The exopolysaccharide–eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 20, 115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keren-Paz, A., Brumfeld, V., Oppenheimer-Shaanan, Y. & Kolodkin-Gal, I. Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms. NPJ Biofilms Microbiomes 4, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15, 848–864 (2013).

    Article  PubMed  Google Scholar 

  17. Ido, N. et al. Bacillus subtilis biofilms characterized as hydrogels. Insights on water uptake and water binding in biofilms. Soft Matter 16, 6180–6190 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Romero, D., Vlamakis, H., Losick, R. & Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abbasi, R. et al. The bacterial extracellular matrix protein TapA is a two-domain partially disordered protein. ChemBioChem 20, 355–359 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Earl, C. et al. The majority of the matrix protein TapA is dispensable for Bacillus subtilis colony biofilm architecture. Mol. Microbiol. 114, 920–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Romero, D., Vlamakis, H., Losick, R. & Kolter, R. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J. Bacteriol. 196, 1505–1513 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. El Mammeri, N. et al. Molecular architecture of bacterial amyloids in Bacillus biofilms. FASEB J. 33, 12146–12163 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Erskine, E., MacPhee, C. E. & Stanley-Wall, N. R. Functional amyloid and other protein fibers in the biofilm matrix. J. Mol. Biol. 430, 3642–3656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serrano, M. et al. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J. Bacteriol. 181, 3632–3643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terra, R., Stanley-Wall, N. R., Cao, G. & Lazazzera, B. A. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J. Bacteriol. 194, 2781–2790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stover, A. G. & Driks, A. Secretion. localization and antibacterial activity of tasA, a Bacillus subtilis spore-associated protein. J. Bacteriol. 181, 1664–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stover, A. G. & Driks, A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol. 181, 5476–5481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erskine, E. et al. Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA. Mol. Microbiol. 110, 897–913 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diehl, A. et al. Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc. Natl Acad. Sci. USA 115, 3237–3242 (2018). This study reveals the crystal structure of monomeric TasA and demonstrates that, unlike other biofilm fibre-forming proteins, TasA is folded and globular when monomeric.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azulay, D. N. et al. Colloidal-like aggregation of a functional amyloid protein. Phys. Chem. Chem. Phys. 22, 23286–23294 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Steinberg, N. et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci. Signal. 13, eaaw8905 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Candela, T. et al. CalY is a major virulence factor and a biofilm matrix protein. Mol. Microbiol. 111, 1416–1429 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Arnaouteli, S. et al. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl Acad. Sci. USA 114, E6184–E6191 (2017). This study uses a multidisciplinary approach that highlights the genetically distinct roles of the matrix protein BslA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ostrowski, A., Mehert, A., Prescott, A., Kiley, T. B. & Stanley-Wall, N. R. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J. Bacteriol. 193, 4821–4831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bromley, K. M. et al. Interfacial self-assembly of a bacterial hydrophobin. Proc. Natl Acad. Sci. USA 112, 5419–5424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Srinivasan, S. et al. Matrix production and sporulation in Bacillus subtilis biofilms localize to propagating wave fronts. Biophys. J. 114, 1490–1498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seminara, A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 1116–1121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Epstein, A. K., Pokroy, B., Seminara, A. & Aizenberg, J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc. Natl Acad. Sci. USA 108, 995–1000 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol. 191, 100–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kovacs, A. T. & Kuipers, O. P. Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. J. Bacteriol. 193, 998–1002 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Gerwig, J., Kiley, T. B., Gunka, K., Stanley-Wall, N. & Stulke, J. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis. Microbiology 160, 682–691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, B. & Stulke, J. SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res. 46, D743–D748 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Guttenplan, S. B., Blair, K. M. & Kearns, D. B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet. 6, e1001243 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Roux, D. et al. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J. Biol. Chem. 290, 19261–19272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaundinya, C. R., Savithri, H. S., Krishnamurthy Rao, K. & Balaji, P. V. In vitro characterization of N-terminal truncated EpsC from Bacillus subtilis 168, a UDP-N-acetylglucosamine 4,6-dehydratase. Arch. Biochem. Biophys. 657, 78–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kaundinya, C. R., Savithri, H. S., Rao, K. K. & Balaji, P. V. EpsN from Bacillus subtilis 168 has UDP-2,6-dideoxy 2-acetamido 4-keto glucose aminotransferase activity in vitro. Glycobiology 28, 802–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Kaundinya, C. R., Savithri, H. S., Rao, K. K. & Balaji, P. V. EpsM from Bacillus subtilis 168 has UDP-2,4,6-trideoxy-2-acetamido-4-amino glucose acetyltransferase activity in vitro. Biochem. Biophys. Res. Commun. 505, 1057–1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Chai, Y., Beauregard, P. B., Vlamakis, H., Losick, R. & Kolter, R. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio 3, e00184-12 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jones, S. E., Paynich, M. L., Kearns, D. B. & Knight, K. L. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol. 192, 4813–4820 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Jakubovics, N. S., Shields, R. C., Rajarajan, N. & Burgess, J. G. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett. Appl. Microbiol. 57, 467–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, Y. et al. Poly-gamma-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front. Microbiol. 7, 1811 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Ashiuchi, M., Soda, K. & Misono, H. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells. Biochem. Biophys. Res. Commun. 263, 6–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Kesel, S. et al. Direct comparison of physical properties of Bacillus subtilis NCIB 3610 and B-1 biofilms. Appl. Environ. Microbiol. 82, 2424–2432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oppenheimer-Shaanan, Y. et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2, 15031 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Azulay, D. N. et al. Biopolymers from a bacterial extracellular matrix affect the morphology and structure of calcium carbonate crystals. Cryst. Growth Des. 18, 5582–5591 (2018).

    Article  CAS  Google Scholar 

  57. Dragos, A. et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat. Microbiol. 3, 1451–1460 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Cairns, L. S., Hobley, L. & Stanley-Wall, N. R. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol. Microbiol. 93, 587–598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. McLoon, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R. & Losick, R. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J. Bacteriol. 193, 679–685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Neiditch, M. B., Capodagli, G. C., Prehna, G. & Federle, M. J. Genetic and structural analyses of RRNPP intercellular peptide signaling of Gram-positive bacteria. Annu. Rev. Genet. 51, 311–333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gallegos-Monterrosa, R. et al. Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. bioRxiv, https://doi.org/10.1101/2020.09.01.278184 (2020).

    Article  Google Scholar 

  65. Omer Bendori, S., Pollak, S., Hizi, D. & Eldar, A. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J. Bacteriol. 197, 592–602 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Banse, A. V., Chastanet, A., Rahn-Lee, L., Hobbs, E. C. & Losick, R. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc. Natl Acad. Sci. USA 105, 15547–15552 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Milton, M. E. et al. The solution structures and interaction of SinR and SinI: elucidating the mechanism of action of the master regulator switch for biofilm formation in Bacillus subtilis. J. Mol. Biol. 432, 343–357 (2020). After years of research, this study reports the first solution structures of SinR and SinI and provides experimental data revealing the mechanisms that govern SinR–SinI interactions.

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi, K. SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol. Microbiol. 69, 1399–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Chai, Y., Norman, T., Kolter, R. & Losick, R. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24, 754–765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chai, Y., Chu, F., Kolter, R. & Losick, R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Otto, S. B. et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems 5, e00425-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Diethmaier, C. et al. The YmdB phosphodiesterase is a global regulator of late adaptive responses in Bacillus subtilis. J. Bacteriol. 196, 265–275 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Diethmaier, C. et al. A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. J. Bacteriol. 193, 5997–6007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kampf, J. et al. Selective pressure for biofilm formation in Bacillus subtilis: differential effect of mutations in the master regulator SinR on bistability. mBio 9, e01464-18 (2018). This study combines genetics and microfluidics to reveal how the interplay between SinR and YmdB determines B. subtilis cell fate.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Boudvillain, M., Figueroa-Bossi, N. & Bossi, L. Terminator still moving forward: expanding roles for Rho factor. Curr. Opin. Microbiol. 16, 118–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Richardson, J. P. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bidnenko, V. et al. Termination factor Rho: from the control of pervasive transcription to cell fate determination in Bacillus subtilis. PLoS Genet. 13, e1006909 (2017). This study reveals that Rho-controlled transcripts constitute a previously unidentified route to control cell differentiation in B. subtilis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12, 594–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mehne, F. M. et al. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem. 288, 2004–2017 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Gundlach, J., Rath, H., Herzberg, C., Mader, U. & Stulke, J. Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front. Microbiol. 7, 804 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Townsley, L., Yannarell, S. M., Huynh, T. N., Woodward, J. J. & Shank, E. A. Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis biofilm formation and plant attachment. mBio 9, e00341-18 (2018). This work unravels how cyclic di-AMP affects biofilm development in B. subtilis as a unique intraspecies extracellular signali.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen, Y., Chai, Y., Guo, J. H. & Losick, R. Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. J. Bacteriol. 194, 5080–5090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao, X. et al. Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J. Bacteriol. 195, 4782–4792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carabetta, V. J. et al. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol. Microbiol. 88, 283–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DeLoughery, A., Dengler, V., Chai, Y. R. & Losick, R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Mol. Microbiol. 99, 425–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Adusei-Danso, F. et al. Structure-function studies of the Bacillus subtilis Ric proteins identify the Fe-S cluster-ligating residues and their roles in development and RNA processing. mBio 10, e01841-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dubnau, E. J. et al. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol. Microbiol. 101, 606–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Antelmann, H. et al. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J. Bacteriol. 179, 7251–7256 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nadezhdin, E., Murphy, N., Dalchau, N., Phillips, A. & Locke, J. C. W. Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nat. Commun. 11, 950 (2020). This work demonstrates how stochastic pulsing of gene expression allows B. subtilis cells in different states to cohabit in the same area of the biofilm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dragos, A. et al. Division of labor during biofilm matrix production. Curr. Biol. 28, 1903–1913 e1905 (2018). This study demonstrates a long-standing evolutionary theory of division of labour between B. subtilis strains in the production of biofilm matrix components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andric, S., Meyer, T. & Ongena, M. Bacillus responses to plant-associated fungal and bacterial communities. Front. Microbiol. 11, 1350 (2020). A review of the secondary metabolites produced by B. subtilis species complex in the context of the plant host environment.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yannarell, S. M., Grandchamp, G. M., Chen, S. Y., Daniels, K. E. & Shank, E. A. A dual-species biofilm with emergent mechanical and protective properties. J. Bacteriol. 201, e00670-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gallegos-Monterrosa, R. et al. Lysinibacillus fusiformis M5 induces increased complexity in Bacillus subtilis 168 colony biofilms via hypoxanthine. J Bacteriol 199, e00204-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Duanis-Assaf, D. et al. Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Sci. Rep. 8, 9350 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Shank, E. A. et al. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc. Natl Acad. Sci. USA 108, E1236–E1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bleich, R., Watrous, J. D., Dorrestein, P. C., Bowers, A. A. & Shank, E. A. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 112, 3086–3091 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Powers, M. J., Sanabria-Valentin, E., Bowers, A. A. & Shank, E. A. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J. Bacteriol. 197, 2129–2138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miquel Guennoc, C., Rose, C., Labbe, J. & Deveau, A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol. Ecol. 94, fiy093 (2018).

    Article  CAS  Google Scholar 

  101. Khezri, M., Jouzani, G. S. & Ahmadzadeh, M. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis. Braz. J. Microbiol. 47, 47–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cawoy, H. et al. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 8, 281–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. DeFilippi, S., Groulx, E., Megalla, M., Mohamed, R. & Avis, T. J. Fungal competitors affect production of antimicrobial lipopeptides in Bacillus subtilis strain B9-5. J. Chem. Ecol. 44, 374–383 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Molina-Santiago, C. et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat. Commun. 10, 1919 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Muller, S., Strack, S. N., Ryan, S. E., Kearns, D. B. & Kirby, J. R. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203–210 (2015).

    Article  PubMed  CAS  Google Scholar 

  106. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209 e212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arnaouteli, S. et al. Pulcherrimin formation controls growth arrest of the Bacillus subtilis biofilm. Proc. Natl Acad. Sci. USA 116, 13553–13562 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Matoz-Fernandez, D. et al. Comment on “Rivalry in Bacillus subtilis colonies: enemy or family?”. Soft Matter 16, 3344–3346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ogran, A. et al. The plant host induces antibiotic production to select the most-beneficial colonizers. Appl. Environ. Microbiol. 85, e00512-19 (2019). This study illustrates the complexity of B. subtilis root colonization and interactions with the plant host, revealing that plants help more-beneficial colonizers by inducing their expression of an antibiotic compound.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl Acad. Sci. USA 114, 4549–4554 (2017). This is the first report of a microfluidic chip set-up to investigate the dynamics of B. subtilis root colonization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenberg, G. et al. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2, 15027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kobayashi, K. & Ikemoto, Y. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms. PLoS Genet. 15, e1008232 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stefanic, P., Kraigher, B., Lyons, N. A., Kolter, R. & Mandic-Mulec, I. Kin discrimination between sympatric Bacillus subtilis isolates. Proc. Natl Acad. Sci. USA 112, 14042–14047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lyons, N. A. & Kolter, R. Bacillus subtilis protects public goods by extending kin discrimination to closely related species. mBio 8, e00723-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lyons, N. A., Kraigher, B., Stefanic, P., Mandic-Mulec, I. & Kolter, R. A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol. 26, 733–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability — a review. Molecules 21, 573 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  118. Blake, C., Christensen, M. N. & Kovacs, A. T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant. Microbe Interact. 34, 15–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Koua, S. H., N’Golo, D. C., Alloue-Boraud, W. M., Konan, F. & Dje, K. M. Bacillus subtilis strains isolated from cocoa trees (Theobroma cacao L.) rhizosphere for their use as potential plant growth promoting rhizobacteria in Cote d’Ivoire. Curr. Microbiol. 77, 2258–2264 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Oslizlo, A. et al. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb. Biotechnol. 8, 527–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 7, e01664-16 (2016). This study identifies the chemoreceptors that are involved in attraction of B. subtilis to host roots, thereby illustrating the active nature of this process.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dong, L. et al. Qualitative and quantitative analyses of the colonization characteristics of Bacillus subtilis strain NCD-2 on cotton root. Curr. Microbiol. 77, 1600–1609 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl Acad. Sci. USA 110, E1621–E1630 (2013). This article demonstrates the importance of B. subtilis matrix components in plant colonization, and that plant cell wall components induce the production of matrix components by B. subtilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, Y. et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol. Microbiol. 85, 418–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, L., Wang, N., Mi, D., Luo, Y. & Guo, J. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum. J. Microbiol. 55, 554–560 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Zhou, H. et al. Loss of GltB inhibits biofilm formation and biocontrol efficiency of Bacillus subtilis Bs916 by altering the production of γ-polyglutamate and three lipopeptides. PLoS ONE 11, e0156247 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant. Physiol. 134, 307–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Therien, M. et al. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2, 100021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Habib, C. et al. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis. PLoS ONE 12, e0179761 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hong, H. A. et al. Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160, 134–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Wilson, M. In Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease ch. 2 (Cambridge University Press, 2004).

  132. Jones, S. E. & Knight, K. L. Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires espH and functional flagella. Infect. Immun. 80, 710–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paynich, M. L., Jones-Burrage, S. E. & Knight, K. L. Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell-mediated disease. J. Immunol. 198, 2689–2698 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Paik, W., Alonzo, F. 3rd & Knight, K. L. Probiotic exopolysaccharide protects against systemic Staphylococcus aureus infection, inducing dual-functioning macrophages that restrict bacterial growth and limit inflammation. Infect. Immun. 87, e00791-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Garsin, D. A. et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921 (2003). This is the first experimental data revealing that propagation of B. subtilis in C. elegans results in extended longevity of the nematode.

    Article  CAS  PubMed  Google Scholar 

  136. Donato, V. et al. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat. Commun. 8, 14332 (2017). This paper demonstrates that biofilm-proficient B. subtilis colonizes the C. elegans gut and extends nematode lifespan, unlike the biofilm-deficient derivatives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Smolentseva, O. et al. Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci. Rep. 7, 7137 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Goya, M. E. et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep. 30, 367–380 e367 (2020). This study links the biofilm-forming capacity of a probiotic B. subtilis strain to its protective effect against Parkinson disease in a nematode model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cogliati, S. et al. Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model Caenorhabditis elegans. J. Alzheimers Dis. 73, 1035–1052 (2020).

    Article  PubMed  Google Scholar 

  140. Leiman, S. A., Arboleda, L. C., Spina, J. S. & McLoon, A. L. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis. BMC Microbiol. 14, 301 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dragos, A. et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol. Ecol. 93, fix155 (2018).

    Google Scholar 

  142. Holscher, T. et al. Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development. J. Mol. Biol. 427, 3695–3708 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Richter, A. et al. Hampered motility promotes the evolution of wrinkly phenotype in Bacillus subtilis. BMC Evol. Biol. 18, 155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martin, M. et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat. Commun. 8, 15127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Dragos, A. et al. Pervasive prophage recombination occurs during evolution of spore-forming bacilli. ISME J. https://doi.org/10.1038/s41396-020-00854-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Martin, M. et al. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J. 14, 2302–2312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Noda-Garcia, L. et al. Chance and pleiotropy dominate genetic diversity in complex bacterial environments. Nat. Microbiol. 4, 1221–1230 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Bromley, K. M. & MacPhee, C. E. BslA-stabilized emulsion droplets with designed microstructure. Interface Focus 7, 20160124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Stanley-Wall, N. R. & MacPhee, C. E. Connecting the dots between bacterial biofilms and ice cream. Phys. Biol. 12, 063001 (2015).

    Article  PubMed  Google Scholar 

  150. Reeksting, B. J., Hoffmann, T. D., Tan, L., Paine, K. & Gebhard, S. In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Appl. Environ. Microbiol. 86, e02739-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yahav, S., Berkovich, Z., Ostrov, I., Reifen, R. & Shemesh, M. Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. Artif. Cells Nanomed. Biotechnol. 46, 974–982 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Duraj-Thatte, A. M., Dorval Courchesne, N.-M. & Joshi, N. S. Methods of making gels and films using curli nanofibers. USA patent WO2017201428 (2017).

  153. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Werb, M. et al. Surface topology affects wetting behavior of Bacillus subtilis biofilms. NPJ Biofilms Microbiomes 3, 11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Falcon Garcia, C. et al. Topographical alterations render bacterial biofilms susceptible to chemical and mechanical stress. Biomater. Sci. 7, 220–232 (2018).

    Article  PubMed  Google Scholar 

  156. Ruhs, P. A., Boni, L., Fuller, G. G., Inglis, R. F. & Fischer, P. In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS ONE 8, e78524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Falcon Garcia, C. et al. Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. NPJ Biofilms Microbiomes 6, 1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trejo, M. et al. Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc. Natl Acad. Sci. USA 110, 2011–2016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Douarche, C., Allain, J. M. & Raspaud, E. Bacillus subtilis bacteria generate an internal mechanical force within a biofilm. Biophys. J. 109, 2195–2202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, W., Li, S., Wang, Z., Yan, E. C. Y. & Leblanc, R. M. Characterization of surface-active biofilm protein BslA in self-assembling langmuir monolayer at the air-water interface. Langmuir 33, 7548–7555 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Ma, W. et al. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes 3, 4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Á.T.K was supported by the Danish National Research Foundation (DNRF137) for the Center for Microbial Secondary Metabolites (CeMiSt). Work in the laboratory of N.R.S.-W. is funded by the Biotechnology and Biological Science Research Council (BBSRC) (BB/P001335/1 and BB/R012415/1). N.C.B is funded by a long-term fellowship awarded by the European Molecular Biology Oganization (EMBO) (ALTF 471-2020).

Peer review information

Nature Reviews Microbiology thanks Y. Chai, I. Kolodkin-Gal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Nicola R. Stanley-Wall or Ákos T. Kovács.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaouteli, S., Bamford, N.C., Stanley-Wall, N.R. et al. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19, 600–614 (2021). https://doi.org/10.1038/s41579-021-00540-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00540-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology