Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Smith, S. E. & Read, D. Mycorrhizal Symbiosis, 3rd edn (Academic Press, 2008).
Bahadur, A. et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 20, E4199 (2019).
Johnson, N., Gehring, C. & Jansa, J. Mycorrhizal mediation of soil (Elsevier, 2016).
van der Heijden, M. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Ferlian, O. et al. Mycorrhiza in tree diversity-ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).
Tedersoo, L., Bahram, M. & Zob, M. How mycorrhizal associations drive plant population and community. Science 367, eaba1223 (2020).
Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).
Peterson, R. L., Massicotte, H. B., & Melville, L. H. Mycorrhizas: anatomy and cell biology (CABI Publishing, 2004).
Bonfante, P. The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytol. 220, 982–995 (2018).
Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fung. Biol. Rev. 26, 39–60 (2012).
Bonfante, P., Venice, F. & Lanfranco, L. The mycobiota: fungi take their place between plants and bacteria. Curr. Opin. Microbiol. 49, 18–25 (2019).
Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).
Elinav, E., Garrett, W. S., Trinchieri, G. & Wargo, J. The cancer microbiome. Nat. Rev. Cancer 19, 371–376 (2019).
Strullu-Derrien, C., Selosse, M. A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol. 220, 1012–1030 (2018). This review is a precious resource of data linking fossil reports with fungal genome sequences.
Field, K. J. & Pressel, S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol. 220, 996–1011 (2018).
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl Acad. Sci. USA 91, 11841–11843 (1994).
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
Strullu-Derrien, C. et al. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 Ma) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol. 203, 964–979 (2014).
Feijen, F. A. A., Vos, R. A., Nuytinck, J. & Merckx, V. S. F. T. Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Sci. Rep. 8, 10698 (2018).
Hoysted, G. A. et al. A mycorrhizal revolution. Curr. Opin. Plant Biol. 44, 1–6 (2018).
Bonfante, P. & Venice, F. Mucoromycota: going to the roots of plant-interacting fungi. Fung. Biol. Rev. 34, 100–113 (2020).
Beimforde, C. et al. Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytol. 192, 988–996 (2011).
Jin-Hua, R., Shen, T. T., Wang, M. M. & Wang, X. Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc. R. Soc. 285, 20181012 (2018).
Ramirez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).
Freudenstein, J. V., Broe, B. B. & Feldenkris, E. R. Phylogenetic relationships at the base of Ericaceae: implications for vegetative and mycorrhizal evolution. Taxon 65, 794–804 (2016).
Ligrone, R. et al. Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am. J. Bot. 94, 1756–1777 (2007).
Rimington, W. R., Duckett, J. G., Field, K. J., Bidartondo, M. I. & Pressel, S. The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza 29, 551–565 (2020).
Benucci, G. M. et al. Evidence for co-evolutionary history of early diverging Lycopodiaceae plants with fungi. Front. Microbiol. 10, 2944 (2020).
Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).
Bona, E. et al. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci. Rep. 6, 26439 (2016).
Fiorilli, V. et al. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci. Rep. 8, 9625 (2018).
Koide, R. T. & Lu, X. Mycorrhizal infection of wild oats: maternal effects on offspring growth and reproduction. Oecologia 90, 218–226 (1992).
Varga, S., Vega-Frutis, R. & Kytöviita, M. M. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis. New Phytol. 199, 812–821 (2013).
Martin, F., Kohler, A., Murat, C., Veneault-Fourrey, C. & Hibbett, D. S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14, 760–773 (2016).
Toruño, T. Y., Stergiopoulos, I. & Coaker, G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419–441 (2016).
Franceschetti, M. et al. Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol. Mol. Biol. Rev. 81, e00066-16 (2017).
Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015). This article compares the genomes of almost 50 fungi and reveals that, during evolution, all ECM fungi originating from saprotrophic ancestors experienced substantial loss of genes coding for plant cell wall-degrading enzymes.
Hibbett, D. S., Gilbert, L. B. & Donoghue, M. J. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407, 506–508 (2000).
Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).
Martin, F. et al. Symbiosis insights from the genome of the mycorrhizal basidiomycete Laccaria bicolor. Nature 452, 88–92 (2008). The article describes the first sequenced genome of a mycorrhizal fungus.
Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytol. 217, 68–73 (2018).
Peter, M. et al. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat. Commun. 7, 12662 (2016).
Murat, C. et al. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat. Ecol. Evol. 2, 1956–1965 (2018).
Ferrari, S. et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4, 49 (2013).
Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).
Perotto, S., Daghino, S. & Martino, E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 220, 1141–1147 (2018).
Wilson, A. W., Hosaka, K. & Mueller, G. M. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytol. 213, 1862–1873 (2017).
Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).
Selosse, M.-A., Schneider-Maunoury, L. & Martos, F. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol. 217, 968–972 (2018).
Chen, E. C. H. et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 220, 1161–1171 (2018).
Venice, F. et al. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ. Microbiol. 22, 122–141 (2020).
Harrison, M. J. & van Buuren, M. L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629 (1995).
Wewer, V., Brands, M. & Dörmann, P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J. 79, 398–412 (2014).
Jang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017). This is a seminal contribution to the concept that AM fungi depend on their host plant for lipids.
Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017). This study provides insight into the dependence of AM fungi on their hosts for fatty acids.
Schüßler A. in The Mycota - Fungal Associations (ed. Hock, B.) 77–91 (Springer, 2012).
Oldroyd, G. E. D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252–263 (2013).
Delaux, P. M., Radhakrishnan, G. & Oldroyd, G. Tracing the evolutionary path to nitrogen-fixing crops. Curr. Opin. Plant Biol. 26, 95–99 (2015).
Radhakrishnan, G. V. et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 1–10 (2020). This extensive analysis of multiple genomes and transcriptomes outlines a set of genes conserved across plant clades that host intracellular symbionts.
Gutjahr, C. & Parniske, M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29, 593–617 (2013).
Genre, A. & Russo, G. Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front. Plant Sci. 7, 9 (2016).
Barker, D. G., Chabaud, M., Russo, G. & Genre, A. Nuclear Ca2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytol. 214, 533–538 (2017).
Bravo, A., York, T., Pumplin, N., Mueller, L. A. & Harrison, M. J. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2, 15208 (2016).
Kamel, L. et al. The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. Front. Plant Sci. 8, 124 (2017).
Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).
Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).
Al-Babili, S. & Bouwmeester, H. J. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161–186 (2015).
Besserer, A., Bécard, G., Jauneau, A., Roux, C. & Séjalon-Delmas, N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148, 402–413 (2008).
Salvioli, A. et al. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J. 10, 130–144 (2016).
Maillet, F. et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58–63 (2011). This article identifies lipochito-oligosaccharides as the fungal molecules required for AM establishment.
Genre, A. et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198, 179–189 (2013). This article identifies chito-oligosaccharides as additional fungal molecules required for AM establishment.
Sun, J. et al. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27, 823–838 (2015).
Chabaud, M. et al. Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorrhizal plant species. PLoS One 10, e0223149 (2019).
He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019). This article presents the first description of a bona fide Myc-factor receptor mediating the AM-specific activation of symbiotic signalling.
Hohnjec, N., Vieweg, M. F., Pühler, A., Becker, A. & Küster, H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 137, 1283–1301 (2005).
Schmitz, A. M. & Harrison, M. J. Signaling events during initiation of arbuscular mycorrhizal symbiosis. J. Integ. Plant Biol. 56, 250–261 (2014). This is an outstanding review of the plant–fungus dialogue required for AM symbiosis.
Czaja, L. F. et al. Transcriptional responses towards diffusible signals from symbiotic microbes reveal MtNFP-and MtDMI3- dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159, 1671–1685 (2012).
Genre, A., Chabaud, M., Timmers, T., Bonfante, P. & Barker, D. G. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17, 3489–3499 (2005).
Gutjahr, C. et al. Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol. 183, 53–61 (2009).
Kosuta, S. et al. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131, 952–962 (2003).
Miura, C. et al. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses. Mol. Plant Microbe Interact. 31, 1032–1047 (2018).
Yuan, Y. et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 9, 1615 (2018).
Cope, K. R. et al. The ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize Populus roots. Plant Cell 31, 2386–2410 (2019).
Sanchez, L. et al. Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol. 139, 1065–1077 (2005).
Weerasinghe, R. R., Bird, D. & Allen, N. S. Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc. Natl Acad. Sci. USA 102, 3147–3152 (2005).
Fernández-Aparicio, M. et al. Parasitic plant infection is partially controlled through the symbiotic pathways. Weed Res. 50, 76–82 (2009).
Skiada, V., Avramidou, M., Bonfante, P., Genre, A. & Papadopoulou., K. K. Symbiotic signalling is at the core of an endophytic Fusarium solani-legume association. Preprint at bioRxiv https://doi.org/10.1101/740043 (2019).
Genre, A., Ortu, G., Bertoldo, C., Martino, E. & Bonfante, P. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol. 149, 1424–1434 (2009).
Esseling, J. J., Lhuissier, F. G. & Emons, A. M. A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell 16, 933–944 (2004).
Kobae, Y. et al. Strigolactone biosynthesis genes of rice is required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol. 59, 544–553 (2018).
Genre, A. & Bonfante, P. Check-in procedures for plant cell entry by biotrophic microbes. Mol. Plant Microbe Interact. 9, 1023–1030 (2007).
Mello, A. & Balestrini, R. Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Front. Microbiol. 9, 2016 (2018).
Zhang, F. et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 220, 1309–1321 (2018).
Vayssières et al. Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiol. 169, 890–902 (2015).
Bonfante, P. et al. The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol. Plant Microbe Interact. 13, 1109–1120 (2000).
Perotto, S. et al. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship. Planta 239, 1337–1349 (2014).
Zhao, X. et al. Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics 15, 747 (2014).
Fournier, J. et al. Remodeling of the infection chamber prior to infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiol. 167, 1233–1242 (2015).
Svistoonoff, S., Hocher, V. & Gherbi, H. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? Curr. Opin. Plant Biol. 20, 11–18 (2014).
Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291–315 (2011).
Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837 (2006).
Mendgen, K. & Kahn, M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 7, 352–356 (2002).
Mihwa, Y. & Valent, B. Communication between filamentous pathogens and plants at the biotrophic interface. Ann. Rev. Phytopathol. 51, 587–611 (2013).
Spanu, P. D. & Panstruga, R. Editorial: biotrophic plant-microbe interactions. Front. Plant Sci. 8, 192 (2017).
Tarkka, M. T. et al. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytol. 199, 529–540 (2013).
Duplessis, S., Courty, P. E., Tagu, D. & Martin, F. Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol. 165, 599–611 (2005).
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006). This is a reference article for studies of plant immunity.
Garcia-Garrido, J. M. & Ocampo, J. A. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53, 1377–1386 (2002).
Liu, J. et al. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15, 2106–2123 (2003).
Giovannetti, M., Mari, A., Novero, M. & Bonfante, P. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Front. Plant Sci. 6, 480 (2015).
Martinez-Medina, A. et al. Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the Solanum lycopersicum-Rhizophagus irregularis mycorrhizal symbiosis. New Phytol. 223, 1560–1574 (2019).
Martinez-Medina, A. et al. Recognizing plant defense priming. Trends Plant Sci. 21, 818–822 (2016).
Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
Jung, S., Martinez-Medina, A., Lopez-Raez, J. & Pozo, M. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664 (2012).
Miozzi, L. et al. Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Front. Microbiol. 10, 1238 (2019).
Jwa, N. S. & Hwang, B. K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8, 1687 (2017).
Chialva, M. et al. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 220, 1296–1308 (2018).
Miyata, K. et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014).
Zhang, X. et al. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81, 258–267 (2015).
Shinya, T., Nakagawa, T., Kaku, H. & Shibuya, N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr. Opin. Plant Biol. 26, 64–71 (2015).
Zeng, T. et al. LysM effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytol. 225, 448–460 (2020).
Sauter, M. & Hager, A. The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its host Picea abies. Planta 179, 61–66 (1989).
Münzenberger, B., Otter, T., Wüstrich, D. & Polle, A. Peroxidase and laccase activities in mycorrhizal and non-mycorrhizal fine roots of Norway spruce (Picea abies) and larch (Larix decidua). Can. J. Bot. 75, 932–938 (1997).
Pozo, M. J., López-Ráez, J. A., Azcón-Aguilar, C. & García-Garrido, J. M. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205, 1431–1436 (2015).
Plett, J. M. et al. The effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses JA-responsive genes. Proc. Natl Acad. Sci. USA 111, 8299 (2014).
Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).
Lin, K. et al. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet. 10, e1004078 (2014).
Zeng, T. et al. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant J. 94, 411–425 (2018).
Kloppholz, S., Kuhn, H. & Requena, N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21, 1204–1209 (2011).
Voß, S., Betz, R., Heidt, S., Corradi, N. & Requena, N. RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Front. Microbiol. 9, 2068 (2018).
Casarrubia, S. et al. The hydrophobin-like OMSSP1 may be an effector in the ericoid mycorrhizal symbiosis. Front. Plant Sci. 9, 546 (2018).
Teixeira, P. J., Colaianni, N. R., Fitzpatrick, C. R. & Dangl, J. L. Beyond pathogens: microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 49, 7–17 (2019).
Hynson, N. A. et al. in Mycoheterotrophy (ed. Merckx, V.) 297–342 (Springer, 2013).
Balzergue, C., Chabaud, M., Barker, D. G., Bécard, G. & Rochange, S. F. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front. Plant Sci. 4, 426 (2013).
Ruytinx, J. et al. in Molecular Mycorrhizal Symbiosis (ed. Martin, F.) 277–298 (John Wiley & Sons, 2016).
Muller, L. M. & Harrison, M. J. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 50, 132–139 (2019).
Desirò, A. et al. Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ. Microbiol. 15, 822–836 (2013).
Genre, A., & Bonfante, P. in The Mycota: Fungal Associations, 2nd Edn, (ed. Hock, B.) 39–49 (Springer, 2012).
Luginbuehl, L. H. & Oldroyd, G. E. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr. Biol. 27, R952–R963 (2017).
Bonfante, P. in Fungal Associations. The Mycota, Vol 9 (ed. Hock, B.) (Springer, 2000).
Ivanov, S., Austin, J., Berg, R. H. & Harrison, M. J. Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nat. Plants 5, 194–203 (2019).
Roth, R. et al. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nat. Plants 5, 204–211 (2019).
Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
Mello, A., Zampieri, E. & Balestrini, R. in Plant Microbes Symbiosis: Applied Facets (ed. Arora, N. K.) 315–326 (Springer, 2015).
Kipfer, T., Moser, B., Egli, S., Wohlgemuth, T. & Ghazoul, J. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167, 219–228 (2011).
Khosla, B. & Reddy, M. S. Response of ectomycorrhizal fungi on the growth and mineral nutrition of Eucalyptus seedlings in bauxite mined soil. Am. Eurasian J. Agric. Env. Sci. 3, 123–126 (2008).
Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. L. Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J. Environ. Manag. 95, S269–S274 (2012).
Oliveira, R. S., Franco, A. R. & Castro, P. M. L. Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol. Eng. 43, 95–103 (2012).
Zhang, H. H., Tang, M., Chen, H. & Zheng, C. L. Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings. Eur. J. Soil. Biol. 46, 55–61 (2010).
Oliveira, R. S., Franco, A. R., Vosátka, M. & Castro, P. M. L. Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis 52, 125–131 (2010).
Bauman, J. M., Keiffer, C. H., Hiremath, S. & McCarthy, B. C. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration. J. Appl. Ecol. 50, 721–729 (2013).
Danell, E. & Camacho, F. J. Successful cultivation of the golden chanterelle. Nature 385, 303 (1997).
Mello, A. in Edible Ectomycorrhizal Mushrooms. Soil Biology Vol. 34 (eds Zambonelli, A. & Bonito, G. M.) 73–81 (Springer, 2012).
Murat, C. Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25, 77–81 (2015).
Zambonelli, A., Iotti, M. & Murat, C. True Truffle (Tuber spp.) in the World (Springer, 2016).
Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8, e70633 (2013).
Rodriguez, A. & Sanders, I. R. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9, 1053–1061 (2015).
Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26, (2016).
Rocha, I. et al. Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9, 471–482 (2019).
Berruti, A., Lumini, E., Balestrini, R. & Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front. Microbiol. 6, 1559 (2016).
Chen, M., Arato, M., Borghi, L., Nouri, E. & Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Front. Plant Sci. 9, 1270 (2018).
Lehmann, A., Veresoglou, S. D., Leifheit, E. F. & Rillig, M. C. Arbuscular mycorrhizal influence on zinc nutrition in crop plants – a meta-analysis. Soil. Biol. Biochem. 69, 123–131 (2014).
Bona, E. et al. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27, 1–11 (2017).
Torres, N., Antolin, M. C. & Goicoechea, N. Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments. Front. Plant Sci. 9, 18 (2018).
Ryan, M. H. & Graham, J. H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107 (2018).
Rillig, M. C. et al. Towards an integrated mycorrhizal technology: harnessing mycorrhizae for sustainable intensification in agriculture. Front. Plant Sci. 7, 1625 (2016).
Cavagnaro, T. R., Bender, S. F., Asghari, H. R. & van der Heijden, M. G. A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20, 283–290 (2015).
Rillig, M. C. et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175 (2019).
DeClerck, F. A. J. et al. Agricultural ecosystems and their services: the vanguard of sustainability? Curr. Opin. Environ. Sust. 23, 92–99 (2016).
Janos, D. P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17, 75–91 (2007).
Kameoka, H. et al. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat. Microbiol. 4, 1654–1660 (2019). This seminal study breaks the dogma of unculturability of AM fungi by demonstrating that the addition of fatty acids to the medium permits their asexual reproduction in axenic culture.
Sugiura, Y. et al. Myristate as a carbon and energy source for the asymbiotic growth of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Preprint at bioRxiv https://doi.org/10.1101/731489 (2019).
Sosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R. & Rillig, M. C. Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet? Front. Microbiol. 10, 744 (2019).
Volpe, V. et al. Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydr. Polym. 229, 115505 (2020). This study shows that the perception of short-chain chito-oligosaccharides stimulates AM colonization and arbuscule development, providing crucial evidence in favour of the role of these soluble molecules as positive elicitors of symbiotic responses in the host plant.
Acknowledgements
The authors apologize to colleagues whose work could not be cited due to space limitations. The authors are grateful to A. Desirò for agreeing to share Fig. 2 and to D. Chamberlain and J. Mach for language editing. Contributions to this Review were partially funded by Fondazione Cassa di Risparmio di Cuneo (Bando Ricerca Scientifica 2015 — project AM-FOR-Quality) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 727929 (TOMRES).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks K. Field and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Glossary
- Angiosperms
-
Vascular plants with seeds and flowers; they are the largest and most diverse group within the kingdom Plantae.
- Saprotrophic
-
A mode of microbial nutrition based on the extracellular digestion of dead or decaying organic matter.
- Biotrophism
-
The nutritional strategy of a pathogen or a mutualist that needs its host to stay alive.
- Rhynie chert
-
An Early Devonian sedimentary deposit located in Scotland and exhibiting exceptionally well preserved fossils of plants, fungi, lichens and animals from an early terrestrial ecosystem.
- Gymnosperms
-
A group of vascular, non-flowering seed-producing plants that includes among conifers, cycads and Ginkgo biloba.
- Gnepine hypothesis
-
According to this hypothesis on the evolution of gymnosperms, gnetophytes are a sister group of the Pinaceae.
- Bryophytes
-
An informal group of early diverging, non-vascular plants, consisting of three divisions: liverworts, hornworts and mosses. All of them are characterized by a dominant gametophytic phase.
- Auxotrophs
-
Organisms that are unable to synthetize a particular organic compound that is required for their own growth.
- Cyanobacteria
-
A group of photosynthetic, nitrogen-fixing bacteria forming filamentous colonies arranged in a gelatinous sheath.
- Protocorms
-
Intermediate tuber-like structures derived from the embryo after germination of orchid seeds and before seedling development.
- Meristems
-
Plant tissues consisting of proliferating stem cells (meristematic cells) that generate tissues and organs.
Rights and permissions
About this article
Cite this article
Genre, A., Lanfranco, L., Perotto, S. et al. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18, 649–660 (2020). https://doi.org/10.1038/s41579-020-0402-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-020-0402-3
This article is cited by
-
How do arbuscular mycorrhizal fungi enhance drought resistance of Leymus chinensis?
BMC Plant Biology (2025)
-
Plasma-activated water promotes and finely tunes arbuscular mycorrhizal symbiosis in Lotus japonicus
BMC Plant Biology (2025)
-
Autoactive CNGC15 enhances root endosymbiosis in legume and wheat
Nature (2025)
-
The Rhizophagus irregularis permease RiFTR1 functions without a ferroxidase partner for reductive iron transport
Scientific Reports (2025)
-
Fungal endophytes influence soil organic carbon and nitrogen fractions promoting carbon sequestration and improving grain yield in soybean
Scientific Reports (2025)