Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Designing modern aqueous batteries

Subjects

Abstract

In the pursuit of more reliable and affordable energy storage solutions, interest in batteries powered by water-based electrolytes is surging. Today’s commercial aqueous batteries lack the energy density and cycle life required to compete in the fast-growing transportation and grid storage sectors, but this will change as new materials and cell design strategies are developed. Many of the constraints of traditional aqueous batteries have been alleviated by innovations such as selective membranes, lean-water electrolytes and new types of electrode reactions. As a result, an unprecedentedly broad range of electrode chemistries may be paired in previously impossible ways via modular cell designs to achieve performance metrics unattainable by traditional aqueous batteries. These innovations, however, change the properties for which aqueous batteries are traditionally known, and may result in compromises. This Review starts by examining the historical evolution of aqueous batteries, summarizing their essential merits and limitations. It then analyses how modern chemistries and cell designs may further strengthen the merits of aqueous batteries and address their limits while sometimes compromising prior merits, providing a holistic and critical overview of modern aqueous battery design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline for the development of aqueous batteries and of the materials used to modernize them.
Fig. 2: Oxygen cycle in sealed aqueous batteries.
Fig. 3: Electrochemical stability window of aqueous electrolytes.
Fig. 4: Types of electrode chemistries in aqueous batteries.
Fig. 5: Energy metrics for electrode reactions in aqueous electrolytes.
Fig. 6: Configurations of aqueous batteries.

Similar content being viewed by others

References

  1. Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).

    Article  CAS  Google Scholar 

  2. Kurzweil, P. Gaston Planté and his invention of the lead–acid battery — the genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434 (2010).

    Article  CAS  Google Scholar 

  3. Pavlov, D. in Lead-Acid Batteries: Science and Technology (ed. Detchko, P.) 3–28 (Elsevier, 2011).

  4. Bullock, K. R. & Salkind, A. J. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 17 (McGraw-Hill Education, 2011).

  5. Nakayama, Y., Hojo, E. & Koike, T. Development of VRLA battery for hybrid bus. J. Power Sources 124, 551–558 (2003).

    Article  CAS  Google Scholar 

  6. Moseley, P. T. High rate partial-state-of-charge operation of VRLA batteries. J. Power Sources 127, 27–32 (2004).

    Article  CAS  Google Scholar 

  7. Shukla, A. K., Venugopalan, S. & Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001).

    Article  CAS  Google Scholar 

  8. Carcone, J. A. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 21 (McGraw-Hill Education, 2011).

  9. Brill, J. N. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 24 (McGraw-Hill Education, 2011).

  10. Chang, S., Young, K.-H., Nei, J. & Fierro, C. Reviews on the U.S. patents regarding nickel/metal hydride batteries. Batteries 2, 10 (2016).

    Article  Google Scholar 

  11. Rand, D. A. J., Holden, L. S., May, G. J., Newnham, R. H. & Peters, K. Valve-regulated lead/acid batteries. J. Power Sources 59, 191–197 (1996).

    Article  CAS  Google Scholar 

  12. Nelson, R. The basic chemistry of gas recombination in lead–acid batteries. JOM 53, 28–33 (2001).

    Article  CAS  Google Scholar 

  13. Ye, Z. & Noréus, D. Oxygen and hydrogen gas recombination in NiMH cells. J. Power Sources 208, 232–236 (2012).

    Article  CAS  Google Scholar 

  14. Allebrod, F., Chatzichristodoulou, C., Mollerup, P. L. & Mogensen, M. B. Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. Int. J. Hydrog. Energy 37, 16505–16514 (2012).

    Article  CAS  Google Scholar 

  15. Carton, A., Sobron, F., Bolado, S. & Gerboles, J. I. Density, viscosity, and electrical conductivity of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 40, 987–991 (1995).

    Article  CAS  Google Scholar 

  16. Ai, F. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 7, 417–426 (2022).

    Article  CAS  Google Scholar 

  17. Singh, M., Kaiser, J. & Hahn, H. Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162, A1196–A1201 (2015).

    Article  CAS  Google Scholar 

  18. Deveau, J., White, C. & Swan, L. G. Lead-acid battery response to various formation levels — part A: recommended formation levels for off-grid solar and conventional applications. Sustain. Energy Technol. Assess. 11, 1–10 (2015).

    Google Scholar 

  19. Wu, W., Shabhag, S., Chang, J., Rutt, A. & Whitacre, J. F. Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162, A803–A808 (2015).

    Article  CAS  Google Scholar 

  20. Singh, A., Cornilsen, B., Mullins, M. & Rogers, T. Nickel hydroxide impregnated carbon foam electrodes for rechargeable nickel batteries. US patent US20060024583A1 (2006).

  21. Lai, Y. Q. et al. Electrochemical performance of a Pb/Pb-MnO2 composite anode in sulfuric acid solution containing Mn2+. Hydrometallurgy 115–116, 64–70 (2012).

    Article  Google Scholar 

  22. Wessells, C., Ruffο, R., Huggins, R. A. & Cui, Y. Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochem. Solid State Lett. 13, A59–A61 (2010).

    Article  CAS  Google Scholar 

  23. Nakamura, K., Shiomi, M., Takahashi, K. & Tsubota, M. Failure modes of valve-regulated lead/acid batteries. J. Power Sources 59, 153–157 (1996).

    Article  CAS  Google Scholar 

  24. He, P., Liu, J.-L., Cui, W.-J., Luo, J.-Y. & Xia, Y.-Y. Investigation on capacity fading of LiFePO4 in aqueous electrolyte. Electrochim. Acta 56, 2351–2357 (2011).

    Article  CAS  Google Scholar 

  25. Gheytani, S., Liang, Y., Jing, Y., Xu, J. Q. & Yao, Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J. Mater. Chem. A 4, 395–399 (2016).

    Article  CAS  Google Scholar 

  26. Juda, W. & McRae, W. A. Coherent ion-exchange gels and membranes. J. Am. Chem. Soc. 72, 1044–1044 (1950).

    Article  CAS  Google Scholar 

  27. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4586 (2004).

    Article  CAS  Google Scholar 

  28. Thaller, L. H. Electrically rechargeable redox flow cell. US patent US3996064A (1976).

  29. Noya, S., Uchida, M. & Yoshino, M. Double fluid cell. Patent JPH04101358A (1992).

  30. Visco, S. J., Nimon, E. & Katz, B. The development of high energy density lithium/air and lithium/water batteries with no self-discharge. ECS Meet. Abstr. MA2006-02, 389–389 (2006).

    Article  Google Scholar 

  31. Imanishi, N. et al. Lithium anode for lithium-air secondary batteries. J. Power Sources 185, 1392–1397 (2008).

    Article  CAS  Google Scholar 

  32. Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).

    Article  CAS  Google Scholar 

  33. Hasegawa, S. et al. Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).

    Article  CAS  Google Scholar 

  35. Yang, T., Liu, X., Sang, L. & Ding, F. Control of interface of glass-ceramic electrolyte/liquid electrolyte for aqueous lithium batteries. J. Power Sources 244, 43–49 (2013).

    Article  CAS  Google Scholar 

  36. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  37. Dubouis, N. et al. The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Article  CAS  Google Scholar 

  38. Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).

    Article  CAS  Google Scholar 

  39. Wang, F. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2, 927–937 (2018).

    Article  CAS  Google Scholar 

  40. Zhang, J. et al. ‘Water-in-salt’ polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    Article  CAS  Google Scholar 

  41. Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).

    Article  CAS  Google Scholar 

  42. Viswanathan, V. et al. Cost and performance model for redox flow batteries. J. Power Sources 247, 1040–1051 (2014).

    Article  CAS  Google Scholar 

  43. Yuan, Z. et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 6, 884–905 (2022).

    Article  CAS  Google Scholar 

  44. Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

    Article  CAS  Google Scholar 

  45. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  46. Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by ‘water-in-bisalt’ electrolyte. Angew. Chem. 128, 7252–7257 (2016).

    Article  Google Scholar 

  47. Zheng, J. et al. Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem 4, 2872–2882 (2018).

    Article  CAS  Google Scholar 

  48. Nakamoto, K., Sakamoto, R., Ito, M., Kitajou, A. & Okada, S. Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017).

    Article  CAS  Google Scholar 

  49. Leonard, D. P., Wei, Z., Chen, G., Du, F. & Ji, X. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018).

    Article  CAS  Google Scholar 

  50. Lukatskaya, M. R. et al. Concentrated mixed cation acetate ‘water-in-salt’ solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11, 2876–2883 (2018).

    Article  CAS  Google Scholar 

  51. Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    Article  CAS  Google Scholar 

  52. Li, T., Li, M., Li, H. & Zhao, H. High-voltage and long-lasting aqueous chlorine-ion battery by virtue of ‘water-in-salt’ electrolyte. iScience 24, 101976 (2021).

    Article  CAS  Google Scholar 

  53. He, X. et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9, 5320 (2018).

    Article  CAS  Google Scholar 

  54. Zhao, J. et al. ‘Water-in-deep eutectic solvent’ electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019).

    Article  CAS  Google Scholar 

  55. Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  Google Scholar 

  56. Peng, M. et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience 1, 83–90 (2021).

    Article  Google Scholar 

  57. Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

    Article  CAS  Google Scholar 

  58. Bi, H. et al. A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32, 2000074 (2020).

    Article  CAS  Google Scholar 

  59. Sun, Y. et al. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Mater. 48, 192–204 (2022).

    Article  Google Scholar 

  60. Jaumaux, P. et al. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021).

    Article  CAS  Google Scholar 

  61. Bin, D., Wen, Y., Wang, Y. & Xia, Y. The development in aqueous lithium-ion batteries. J. Energy Chem. 27, 1521–1535 (2018).

    Article  Google Scholar 

  62. Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    Article  CAS  Google Scholar 

  63. Ruan, P., Liang, S., Lu, B., Fan, H. J. & Zhou, J. Design strategies for high‐energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, e202200598 (2022).

    Article  CAS  Google Scholar 

  64. Liu, Z. et al. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem 15, e202200348 (2022).

    Article  CAS  Google Scholar 

  65. Sánchez-Díez, E. et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021).

    Article  Google Scholar 

  66. Zhang, R. et al. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chin. Chem. Lett. https://doi.org/10.1016/j.cclet.2022.1006.1023 (2022).

  67. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  CAS  Google Scholar 

  68. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  Google Scholar 

  69. Sun, W. et al. ‘Water-in-salt’ electrolyte enabled LiMn2O4/TiS2 lithium-ion batteries. Electrochem. Commun. 82, 71–74 (2017).

    Article  CAS  Google Scholar 

  70. Li, Z., Young, D., Xiang, K., Carter, W. C. & Chiang, Y.-M. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013).

    Article  CAS  Google Scholar 

  71. Whitacre, J. F. et al. A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Technol. 3, 20–31 (2015).

    Article  CAS  Google Scholar 

  72. Wessells, C. D., Peddada, S. V., McDowell, M. T., Huggins, R. A. & Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98–A103 (2011).

    Article  Google Scholar 

  73. Huang, J. et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018).

    Article  Google Scholar 

  74. Dong, S. et al. Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5, 1537–1551 (2019).

    Article  CAS  Google Scholar 

  75. Zhang, H. et al. Interlayer engineering of α-MoO3 modulates selective hydronium intercalation in neutral aqueous electrolyte. Angew. Chem. Int. Ed. 60, 896–903 (2021).

    Article  CAS  Google Scholar 

  76. Zheng, J. P., Cygan, P. J. & Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).

    Article  CAS  Google Scholar 

  77. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  78. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  79. Chengjun, X., Baohua, L., Hongda, D. & Feiyu, K. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article  Google Scholar 

  80. Chen, H. et al. Reunderstanding the reaction mechanism of aqueous Zn–Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, 2109092 (2022).

    Article  CAS  Google Scholar 

  81. Shpigel, N. et al. New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Mater. 32, 1–10 (2020).

    Article  Google Scholar 

  82. Huang, Z. et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat. Commun. 12, 3106 (2021).

    Article  CAS  Google Scholar 

  83. Jiang, H. et al. An aqueous dual-ion battery cathode of Mn3O4 via reversible insertion of nitrate. Angew. Chem. 131, 5340–5345 (2019).

    Article  Google Scholar 

  84. Qin, H., Song, Z. P., Zhan, H. & Zhou, Y. H. Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367–372 (2014).

    Article  CAS  Google Scholar 

  85. Yan, L., Qi, Y.-e, Dong, X., Wang, Y. & Xia, Y. Ammonium-ion batteries with a wide operating temperature window from −40 to 80 °C. eScience 1, 212–218 (2021).

    Article  Google Scholar 

  86. Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  CAS  Google Scholar 

  87. Wang, F. et al. High-voltage aqueous magnesium ion batteries. ACS Cent. Sci. 3, 1121–1128 (2017).

    Article  CAS  Google Scholar 

  88. Gheytani, S. et al. An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017).

    Article  Google Scholar 

  89. Yue, X., Liu, H. & Liu, P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun. 55, 1647–1650 (2019).

    Article  CAS  Google Scholar 

  90. Perticarari, S. et al. Dual anion–cation reversible insertion in a bipyridinium–diamide triad as the negative electrode for aqueous batteries. Adv. Energy Mater. 8, 1701988 (2018).

    Article  Google Scholar 

  91. Patil, N. et al. Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries. ACS Appl. Energy Mater. 2, 3035–3041 (2019).

    Article  CAS  Google Scholar 

  92. Zhang, Y., Zhao, L., Liang, Y., Wang, X. & Yao, Y. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2, 110–115 (2022).

    Article  Google Scholar 

  93. Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997).

    Article  Google Scholar 

  94. Kan, H. S., Hisato, W., Ryu, K., Kenichi, O. & Hiroyuki, N. An ultrahigh output rechargeable rlectrode of a hydrophilic radical polymer/nanocarbon hybrid with an exceptionally large current density beyond 1 A cm−2. Adv. Mater. 30, 1800900 (2018).

    Article  Google Scholar 

  95. Zhang, Y., Liang, Y., Dong, H., Wang, X. & Yao, Y. Charge storage mechanism of a quinone polymer electrode for zinc-ion batteries. J. Electrochem. Soc. 167, 070558 (2020).

    Article  Google Scholar 

  96. Bernard, P. in Encyclopedia of Electrochemical Power Sources Vol. 4 (ed. Jürgen, G.) 459–481 (Elsevier, 2009).

  97. Salkind, A. J., Karpinski, A. P. & Serenyi, J. R. in Encyclopedia of Electrochemical Power Sources Vol. 5 (ed. Jürgen, G.) 513–523 (Elsevier, 2009).

  98. Liu, J. et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143, 15475–15489 (2021).

    Article  CAS  Google Scholar 

  99. Guo, W., Tian, Z., Yang, C., Lai, Y. & Li, J. ZIF-8 derived nano-SnO2@ZnO as anode for Zn/Ni secondary batteries. Electrochem. Commun. 82, 159–162 (2017).

    Article  CAS  Google Scholar 

  100. Shukla, A. K. & Hariprakash, B. in Encyclopedia of Electrochemical Power Sources Vol. 4 (ed. Jürgen, G.) 522–527 (Elsevier, 2009).

  101. Cooper, A. & Moseley, P. T. Progress in overcoming the failure modes peculiar to VRLA batteries. J. Power Sources 113, 200–208 (2003).

    Article  CAS  Google Scholar 

  102. Atlung, S. & Zachau-Christiansen, B. Degradation of the positive plate of the lead/acid battery during cycling. J. Power Sources 30, 131–141 (1990).

    Article  CAS  Google Scholar 

  103. Hollenkamp, A. F. & Newnham, R. H. Benefits of controlling plate-group expansion: opening the door to advanced lead/acid batteries. J. Power Sources 67, 27–32 (1997).

    Article  CAS  Google Scholar 

  104. Moseley, P. T., Nelson, R. F. & Hollenkamp, A. F. The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources 157, 3–10 (2006).

    Article  CAS  Google Scholar 

  105. Bača, P., Micka, K., Křivík, P., Tonar, K. & Tošer, P. Study of the influence of carbon on the negative lead-acid battery electrodes. J. Power Sources 196, 3988–3992 (2011).

    Article  Google Scholar 

  106. Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 114, 6197–6202 (2017).

    Article  CAS  Google Scholar 

  107. Kumar, M. & Nagaiah, T. C. High energy density aqueous rechargeable sodium-ion/sulfur batteries in ‘water in salt’ electrolyte. Energy Storage Mater. 49, 390–400 (2022).

    Article  Google Scholar 

  108. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  CAS  Google Scholar 

  109. Yoo, S. J. et al. Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993 (2017).

    Article  CAS  Google Scholar 

  110. Zou, Y. et al. A four-electron Zn-I2 aqueous battery enabled by reversible I/I2/I+ conversion. Nat. Commun. 12, 170 (2021).

    Article  CAS  Google Scholar 

  111. Li, X. et al. Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 14, 407–413 (2021).

    Article  CAS  Google Scholar 

  112. Kundu, D. et al. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30, 3874–3881 (2018).

    Article  CAS  Google Scholar 

  113. Dong, H. et al. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020).

    Article  CAS  Google Scholar 

  114. Wang, X. et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56, 2909–2913 (2017).

    Article  CAS  Google Scholar 

  115. Li, Y. et al. High-energy-density quinone-based electrodes with [Al(OTF)]2+ storage mechanism for rechargeable aqueous aluminum batteries. Adv. Funct. Mater. 31, 2102063 (2021).

    Article  CAS  Google Scholar 

  116. Nam, K. W. et al. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020).

    Article  CAS  Google Scholar 

  117. Lin, Z. et al. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021).

    Article  CAS  Google Scholar 

  118. Guo, Z. et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737–11741 (2018).

    Article  CAS  Google Scholar 

  119. Luo, Z. et al. High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects. J. Mater. Chem. A 9, 6131–6138 (2021).

    Article  CAS  Google Scholar 

  120. Volmer, M. & Estermann, I. Über den mechanismus der molekülabscheidung an kristallen. Z. Phys. 7, 13–17 (1921).

    Article  CAS  Google Scholar 

  121. Fischer, H. & Heiling, H. F. Morphology of the growth of isolated crystals in cathodic metal deposits. Trans. IMF 31, 90–105 (1954).

    Article  CAS  Google Scholar 

  122. Winand, R. Electrocrystallization — theory and applications. Hydrometallurgy 29, 567–598 (1992).

    Article  CAS  Google Scholar 

  123. Wang, R. Y., Kirk, D. W. & Zhang, G. X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions. J. Electrochem. Soc. 153, C357 (2006).

    Article  CAS  Google Scholar 

  124. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  CAS  Google Scholar 

  125. Cai, Z. et al. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020).

    Article  Google Scholar 

  126. Zhang, Y. et al. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 21, 10446–10452 (2021).

    Article  CAS  Google Scholar 

  127. Garcia, G., Ventosa, E. & Schuhmann, W. Complete prevention of dendrite formation in Zn metal anodes by means of pulsed charging protocols. ACS Appl. Mater. Inter. 9, 18691–18698 (2017).

    Article  CAS  Google Scholar 

  128. Sun, K. E. K. et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Inter. 9, 9681–9687 (2017).

    Article  CAS  Google Scholar 

  129. Sun, K. E. K., Hoang, T. K. A., Doan, T. N. L., Yu, Y. & Chen, P. Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24, 1667–1673 (2018).

    Article  CAS  Google Scholar 

  130. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  Google Scholar 

  131. Kang, L. et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018).

    Article  Google Scholar 

  132. Zhao, Z. et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    Article  CAS  Google Scholar 

  133. Yang, Q. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32, 2001755 (2020).

    Article  CAS  Google Scholar 

  134. Yuan, D. et al. Lignin@Nafion membranes forming Zn solid–electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem 12, 4889–4900 (2019).

    Article  CAS  Google Scholar 

  135. Trócoli, R. & La Mantia, F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485 (2015).

    Article  Google Scholar 

  136. Parker, J. F. et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    Article  CAS  Google Scholar 

  137. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

    Article  CAS  Google Scholar 

  138. Cui, M. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019).

    Article  CAS  Google Scholar 

  139. Tian, H. et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021).

    Article  CAS  Google Scholar 

  140. Pletcher, D. et al. A novel flow battery — a lead-acid battery based on an electrolyte with soluble lead(ii): V. Studies of the lead negative electrode. J. Power Sources 180, 621–629 (2008).

    Article  CAS  Google Scholar 

  141. Yang, Q. et al. Rechargeable aqueous Mn-metal battery enabled by inorganic–organic interfaces. Angew. Chem. Int. Ed. 61, e202206471 (2022).

    CAS  Google Scholar 

  142. Zhao, Q. et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4, eaau8131 (2018).

    Article  CAS  Google Scholar 

  143. Hazza, A., Pletcher, D. & Wills, R. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(ii). Part I. Preliminary studies. Phys. Chem. Chem. Phys. 6, 1773–1778 (2004).

    Article  CAS  Google Scholar 

  144. Pletcher, D. et al. A novel flow battery — A lead-acid battery based on an electrolyte with soluble lead(II): Part VI. Studies of the lead dioxide positive electrode. J. Power Sources 180, 630–634 (2008).

    Article  CAS  Google Scholar 

  145. Verde, M. G., Carroll, K. J., Wang, Z., Sathrum, A. & Meng, Y. S. Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries. Energy Environ. Sci. 6, 1573–1581 (2013).

    Article  CAS  Google Scholar 

  146. Chen, W. et al. A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018).

    Article  CAS  Google Scholar 

  147. Rodrigues, S., Shukla, A. K. & Munichandraiah, N. A cyclic voltammetric study of the kinetics and mechanism of electrodeposition of manganese dioxide. J. Appl. Electrochem. 28, 1235–1241 (1998).

    Article  CAS  Google Scholar 

  148. Xie, C. et al. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020).

    Article  CAS  Google Scholar 

  149. Chen, Y. et al. Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chem. Eng. J. 450, 137923 (2022).

    Article  CAS  Google Scholar 

  150. Lei, J., Yao, Y., Wang, Z. & Lu, Y.-C. Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14, 4418–4426 (2021).

    Article  CAS  Google Scholar 

  151. Thaller, L. H. Electrically rechargeable redox flow cell. US patent US3996064 A (1976).

  152. Skyllas-Kazacos, M., Rychcik, M., Robins, R. G., Fane, A. G. & Green, M. A. New all-vanadium redox flow cell. J. Electrochem. Soc. 133, 1057–1058 (1986).

    Article  CAS  Google Scholar 

  153. Alotto, P., Guarnieri, M. & Moro, F. Redox flow batteries for the storage of renewable energy: a review. Renew. Sust. Energy Rev. 29, 325–335 (2014).

    Article  CAS  Google Scholar 

  154. Eustace, D. J. Bromine complexation in zinc-bromine circulating batteries. J. Electrochem. Soc. 127, 528–532 (1980).

    Article  CAS  Google Scholar 

  155. Carr, P., Symons, P. C. & Aller, D. J. Operational zinc chlorine battery based on a water store. US patent US4146680A (1979).

  156. Cho, K. T. et al. High performance hydrogen/bromine redox flow battery for grid-sacale energy storage. J. Electrochem. Soc. 159, A1806–A1815 (2012).

    Article  CAS  Google Scholar 

  157. Xu, Y., Wen, Y.-H., Cheng, J., Cao, G.-P. & Yang, Y.-S. A study of tiron in aqueous solutions for redox flow battery application. Electrochim. Acta 55, 715–720 (2010).

    Article  CAS  Google Scholar 

  158. Huskinson, B. et al. A metal-free organic-inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    Article  CAS  Google Scholar 

  159. Kwabi, D. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894–1906 (2018).

    Article  CAS  Google Scholar 

  160. Hollas, A. et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018).

    Article  CAS  Google Scholar 

  161. Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016).

    Article  Google Scholar 

  162. Beh, E. S. et al. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639–644 (2017).

    Article  CAS  Google Scholar 

  163. Liu, Y. et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861–1870 (2019).

    Article  CAS  Google Scholar 

  164. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

    Article  CAS  Google Scholar 

  165. Armstrong, C. G. & Toghill, K. E. Stability of molecular radicals in organic non-aqueous redox flow batteries: a mini review. Electrochem. Commun. 91, 19–24 (2018).

    Article  CAS  Google Scholar 

  166. Jing, Y. et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. https://doi.org/10.1038/s41557-022-00967-4 (2022).

    Article  Google Scholar 

  167. Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  Google Scholar 

  168. Imanishi, N. & Yamamoto, O. Perspectives and challenges of rechargeable lithium–air batteries. Mater. Today Adv. 4, 100031 (2019).

    Article  Google Scholar 

  169. Xie, J. & Wang, Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 52, 1721–1729 (2019).

    Article  CAS  Google Scholar 

  170. Cox, A. N. Allen’s Astrophysical Quantities 4th edn (Springer, 2002).

  171. Du, C., Gao, Y., Wang, J. & Chen, W. Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn–N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 55, 12801–12804 (2019).

    Article  CAS  Google Scholar 

  172. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  Google Scholar 

  173. Placke, T. et al. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018).

    Article  CAS  Google Scholar 

  174. Manthiram, A. & Li, L. Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5, 1401302 (2015).

    Article  Google Scholar 

  175. Turaev, D. Y. Use of ion-exchange membranes in chemical power cells. Russ. J. Appl. Chem. 78, 1615–1619 (2005).

    Article  CAS  Google Scholar 

  176. Gu, S., Gong, K., Yan, E. Z. & Yan, Y. A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7, 2986–2998 (2014).

    Article  CAS  Google Scholar 

  177. Lu, Y., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756–5759 (2011).

    Article  CAS  Google Scholar 

  178. Tomazic, G. & Skyllas-Kazacos, M. in Electrochemical energy storage for renewable sources and grid balancing (eds Patrick, T. M. & Jürgen, G.) 309–336 (Elsevier, 2015).

  179. Khor, A. et al. Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater. Today Energy 8, 80–108 (2018).

    Article  Google Scholar 

  180. Li, Z. et al. Aqueous semi-solid flow cell: demonstration and analysis. Phys. Chem. Chem. Phys. 15, 15833–15839 (2013).

    Article  CAS  Google Scholar 

  181. Madec, L. et al. Surfactant for enhanced rheological, electrical, and electrochemical performance of suspensions for semisolid redox flow batteries and supercapacitors. ChemPlusChem 80, 396–401 (2015).

    Article  CAS  Google Scholar 

  182. Chen, Y. et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries. Joule 3, 2255–2267 (2019).

    Article  CAS  Google Scholar 

  183. Li, Z. et al. Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the TcSUH funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and writing of the manuscript.

Corresponding author

Correspondence to Yan Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Dongliang Chao and Yi-Chun Lu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yao, Y. Designing modern aqueous batteries. Nat Rev Mater 8, 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00511-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing