Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spatial organization of transcriptional control

Abstract

In animals, the sequences for controlling gene expression do not concentrate just at the transcription start site of genes, but are frequently thousands to millions of base pairs distal to it. The interaction of these sequences with one another and their transcription start sites is regulated by factors that shape the three-dimensional (3D) organization of the genome within the nucleus. Over the past decade, indirect tools exploiting high-throughput DNA sequencing have helped to map this 3D organization, have identified multiple key regulators of its structure and, in the process, have substantially reshaped our view of how 3D genome architecture regulates transcription. Now, new tools for high-throughput super-resolution imaging of chromatin have directly visualized the 3D chromatin organization, settling some debates left unresolved by earlier indirect methods, challenging some earlier models of regulatory specificity and creating hypotheses about the role of chromatin structure in transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contrasting views of enhancer-mediated transcription regulation based on 3C and Hi-C data.
Fig. 2: Open questions in the interpretation of population Hi-C data.
Fig. 3: Chromosome tracing disambiguates chromatin structure compared to generic super-resolution approaches.
Fig. 4: Overview of the chromosome-tracing procedure.
Fig. 5: Comparison of chromosome-tracing data and Hi-C data.
Fig. 6: Cell-type-specific topologically associating domains link cell-type-specific combinations of regulatory elements in Drosophila melanogaster embryos.

Similar content being viewed by others

References

  1. Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13–25 (2014).

    Article  CAS  Google Scholar 

  2. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018). This review discusses enhancers, transcriptional regulation and the role of 3D genome organization, focusing on models and hypotheses.

    Article  CAS  Google Scholar 

  3. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

    Article  CAS  Google Scholar 

  4. de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article  Google Scholar 

  5. Marinić, M., Aktas, T., Ruf, S. & Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24, 530–542 (2013).

    Article  Google Scholar 

  6. Lorberbaum, D. S. et al. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1. eLlife 5, e13550 (2016).

    Article  Google Scholar 

  7. Ibrahim, D. M. & Mundlos, S. Three-dimensional chromatin in disease: what holds us together and what drives us apart? Curr. Opin. Cell Biol. 64, 1–9 (2020).

    Article  CAS  Google Scholar 

  8. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    Article  CAS  Google Scholar 

  9. Santiago-Algarra, D., Dao, L. T. M., Pradel, L., España, A. & Spicuglia, S. Recent advances in high-throughput approaches to dissect enhancer function. F1000Res. 6, 939 (2017).

    Article  Google Scholar 

  10. Agbleke, A. A. et al. Advances in chromatin and chromosome research: perspectives from multiple fields. Mol. Cell 79, 881–901 (2020).

    Article  CAS  Google Scholar 

  11. Shaban, H. A., Barth, R. & Bystricky, K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol. 21, 278 (2020).

    Article  Google Scholar 

  12. Shaban, H. A. & Seeber, A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. 48, 3423–3434 (2020).

    Article  CAS  Google Scholar 

  13. Jerkovic´, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021). This relatively comprehensive article reviews the primary methods used in studying chromatin structure and organization.

    Article  Google Scholar 

  14. Lim, B. & Levine, M. S. Enhancer–promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2020).

    Article  Google Scholar 

  15. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article  CAS  Google Scholar 

  16. Goel, V. Y. & Hansen, A. S. The macro and micro of chromosome conformation capture. Wiley Interdisc. Rev. Dev. Biol. 10, e395 (2021).

    Article  CAS  Google Scholar 

  17. Mirny, L. & Dekker, J. Mechanisms of chromosome folding and nuclear organization: their interplay and open questions. Cold Spring Harb. Perspect. Biol. 14, a040147 (2021). This recent review summarizes major advances in the field (particularly from Hi-C and modelling), and highlights many open questions for the field.

    Article  Google Scholar 

  18. McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    Article  CAS  Google Scholar 

  19. Dekker, J. & Mirny, L. A. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  Google Scholar 

  20. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a B-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    Article  CAS  Google Scholar 

  21. Banerji, J., Olson, L. & Schaffner, W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  22. Driever, W., Thoma, G. & Nüsslein-Volhard, C. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–367 (1989).

    Article  CAS  Google Scholar 

  23. Stanojevic, D., Small, S. & Levine, M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254, 1385–1387 (1991).

    Article  CAS  Google Scholar 

  24. Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  Google Scholar 

  25. Udvardy, A., Maine, E. & Schedl, P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J. Mol. Biol. 185, 341–358 (1985).

    Article  CAS  Google Scholar 

  26. Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  Google Scholar 

  27. Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).

    Article  Google Scholar 

  28. Han, J., Zhang, Z. & Wang, K. 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol. Cytogenet. 11, 21 (2018).

    Article  Google Scholar 

  29. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    Article  Google Scholar 

  30. Sati, S. & Cavalli, G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126, 33–44 (2017).

    Article  Google Scholar 

  31. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  32. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  Google Scholar 

  33. Palstra, R.-J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  34. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  Google Scholar 

  35. Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57 (2009).

    Article  CAS  Google Scholar 

  36. Noordermeer, D. et al. The dynamic architecture of Hox gene clusters. Science 334, 222–225 (2011).

    Article  CAS  Google Scholar 

  37. Montavon, T. et al. A regulatory archipelago controls hox genes transcription in digits. Cell 147, 1132–1145 (2011).

    Article  CAS  Google Scholar 

  38. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  Google Scholar 

  39. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 4, 3–7 (2013).

    Google Scholar 

  40. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  Google Scholar 

  41. Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    Article  CAS  Google Scholar 

  42. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  Google Scholar 

  43. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  Google Scholar 

  44. Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).

    Article  CAS  Google Scholar 

  45. Lieberman Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  46. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  Google Scholar 

  47. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  Google Scholar 

  48. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  Google Scholar 

  49. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  Google Scholar 

  50. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  Google Scholar 

  51. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014).

    Article  Google Scholar 

  52. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    Article  CAS  Google Scholar 

  53. Cavalheiro, G. R., Pollex, T. & Furlong, E. E. To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr. Opin. Genet. Dev. 67, 119–129 (2021).

    Article  CAS  Google Scholar 

  54. Ibrahim, D. M. & Mundlos, S. The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization. Curr. Opin. Genet. Dev. 61, 1–8 (2020).

    Article  CAS  Google Scholar 

  55. Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019).

    Article  CAS  Google Scholar 

  56. Williamson, I. et al. Developmentally regulated Shh expression is robust to TAD perturbations. Development 146, dev179523 (2019).

    Article  CAS  Google Scholar 

  57. Williamson, I., Lettice, L. A., Hill, R. E. & Bickmore, W. A. Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity. Development 143, 2994–3001 (2016).

    CAS  Google Scholar 

  58. Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).

    Article  CAS  Google Scholar 

  59. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  Google Scholar 

  60. Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

    Article  CAS  Google Scholar 

  61. Despang, A. et al. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    Article  CAS  Google Scholar 

  62. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  Google Scholar 

  63. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019). This paper describes two-point live imaging in mouse embryonic stem cells with live readout of mRNA activity, and found no correlation of E-P proximity and promoter firing, in parallel work to Chen et al. (2018).

    Article  Google Scholar 

  64. Huang, H. et al. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat. Genet. 53, 1064–1074 (2021).

    Article  CAS  Google Scholar 

  65. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  Google Scholar 

  66. Phanstiel, D. H. et al. Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development. Mol. Cell 67, 1037–1048 (2017).

    Article  CAS  Google Scholar 

  67. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    Article  CAS  Google Scholar 

  68. Klein, D. C. & Hainer, S. J. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res. 28, 69–85 (2020).

    Article  CAS  Google Scholar 

  69. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  Google Scholar 

  70. Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).

    Article  CAS  Google Scholar 

  71. Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are maintained upon acute loss of CTCF, cohesin, WAPL, and YY1. Preprint at bioRxiv https://doi.org/10.1101/2021.07.14.452365 (2021).

    Article  Google Scholar 

  72. Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat. Commun. 13, 2139 (2022).

    Article  CAS  Google Scholar 

  73. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Preprint at bioRxiv https://doi.org/10.1101/2022.07.12.499637 (2022).

    Article  Google Scholar 

  74. Levo, M. et al. Transcriptional coupling of distant regulatory genes in living embryos. Nature 605, 754–760 (2022).

    Article  CAS  Google Scholar 

  75. Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    Article  CAS  Google Scholar 

  76. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    Article  CAS  Google Scholar 

  77. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  CAS  Google Scholar 

  78. Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    Article  CAS  Google Scholar 

  79. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  Google Scholar 

  80. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl Acad. Sci. USA 109, 16173–16178 (2012). This article introduced the ‘strings and binders’ model of chromatin folding, among the first models for TADs.

    Article  CAS  Google Scholar 

  81. Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014).

    Article  CAS  Google Scholar 

  82. Shi, G., Liu, L., Hyeon, C. & Thirumalai, D. Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nat. Commun. 9, 3161 (2018).

    Article  Google Scholar 

  83. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016). This article introduced the loop extrusion model to explain TADs, in parallel work with Sanborn et al. (2015).

    Article  CAS  Google Scholar 

  84. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015). In parallel work to Fudenberg et al. (2016), this article introduced a tension globule and loop extrusion model to explain TADs and provided one of the first tests of the border function of single, directed CTCF sites.

    Article  CAS  Google Scholar 

  85. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. 115, E6697–E6706 (2018).

    Article  CAS  Google Scholar 

  86. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, 38 (2010).

    Article  Google Scholar 

  87. Chang, L.-H., Ghosh, S. & Noordermeer, D. TADs and their borders: free movement or building a wall? J. Mol. Biol. 432, 643–652 (2019).

    Article  Google Scholar 

  88. Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

    Article  Google Scholar 

  89. Sikorska, N. & Sexton, T. Defining functionally relevant spatial chromatin domains: it is a TAD complicated. J. Mol. Biol. 432, 653–664 (2020).

    Article  CAS  Google Scholar 

  90. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  CAS  Google Scholar 

  91. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  Google Scholar 

  92. Bonchuk, A. et al. Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol. 13, 63 (2015).

    Article  Google Scholar 

  93. Chetverina, D., Aoki, T., Erokhin, M., Georgiev, P. & Schedl, P. Making connections: Insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 36, 163–172 (2014).

    Article  CAS  Google Scholar 

  94. Fujioka, M., Mistry, H., Schedl, P. & Jaynes, J. B. Determinants of chromosome architecture: insulator pairing in cis and in trans. PLoS Genet. 12, e1005889 (2016).

    Article  Google Scholar 

  95. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    Article  CAS  Google Scholar 

  96. Beagan, J. A. et al. Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression. Nat. Neurosci. 23, 707–717 (2020).

    Article  CAS  Google Scholar 

  97. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    Article  Google Scholar 

  98. Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    Article  CAS  Google Scholar 

  99. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  Google Scholar 

  100. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  CAS  Google Scholar 

  101. Boettiger, A. & Murphy, S. Advances in chromatin imaging at kilobase-scale resolution. Trends Genet. 36, 273–287 (2020).

    Article  CAS  Google Scholar 

  102. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  Google Scholar 

  103. Szabo, Q. et al. Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat. Genet. 52, 1151–1157 (2020).

    Article  CAS  Google Scholar 

  104. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    Article  CAS  Google Scholar 

  105. Cattoni, D. I. et al. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nat. Commun. 8, 1753 (2017).

    Article  Google Scholar 

  106. Fudenberg, G. & Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673–678 (2017). This article provides an excellent comparison of FISH and Hi-C measurements, using both theory and experiment.

    Article  CAS  Google Scholar 

  107. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016). This article introduced chromosome tracing (1-Mb resolution), enabling validation of Hi-C compartments and analysis of compartments at the single-cell level.

    Article  CAS  Google Scholar 

  108. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019). This paper introduced the ORCA chromosome tracing approach (up to 2-kb resolution), combined with RNA labelling to map cell-type specific changes in chromatin structure during embryonic development.

    Article  CAS  Google Scholar 

  109. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019). This paper introduced the Hi-M chromosome tracing in whole embryos, combined with antibody detection of RNA.

    Article  CAS  Google Scholar 

  110. Liu, M. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020). This article introduced the MINA chromosome tracing approach in mouse embryonic tissue, combined with RNA and protein imaging.

    Article  CAS  Google Scholar 

  111. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020). In parallel work to Takei et al. (2021), this paper introduced the multiplexed barcoding DNA MERFISH method, locating over 1000 unique genomic loci throughout the genome in combination with genome-scale detection of nascent transcription and major protein markers of nuclear organization.

    Article  CAS  Google Scholar 

  112. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021). In parallel work to Su et al. (2020), this article introduced the multiplexed barcoding SeqFISH+ method, locating 3,600 unique genomic loci, combined with labelling nascent RNA and protein.

    Article  CAS  Google Scholar 

  113. Takei, Y. et al. Single-cell nuclear architecture across cell types in the mouse brain. Science 374, 586–594 (2021).

    Article  CAS  Google Scholar 

  114. Cardozo Gizzi, A. M. et al. Direct and simultaneous observation of transcription and chromosome architecture in single cells with Hi-M. Nat. Protoc. 15, 840–876 (2020).

    Article  CAS  Google Scholar 

  115. Liu, M. et al. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat. Protoc. 16, 2667–2697 (2021).

    Article  CAS  Google Scholar 

  116. Mateo, L. J., Sinnott-Armstrong, N. & Boettiger, A. N. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Nat. Protoc. 16, 1647-1713 (2021).

    Article  CAS  Google Scholar 

  117. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  Google Scholar 

  118. Rouhanifard, S. H. et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. 37, 84–89 (2019).

    Article  CAS  Google Scholar 

  119. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018). This article reported improved resolution of chromosome tracing (30-kb), enabling validation of TADs and showing TADs to be statistical features emerging from averaging heterogeneous, TAD-like folds at the single-cell level.

    Article  Google Scholar 

  120. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  Google Scholar 

  121. Hafner, A., Park, M., Berger, S. E., Nora, E. P. & Boettiger, A. N. Loop stacking organizes genome folding from TADs to chromosomes. Preprint at bioRxiv https://doi.org/10.1101/2022.07.13.499982 (2022).

    Article  Google Scholar 

  122. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e10 (2019).

    Article  CAS  Google Scholar 

  123. Maeda, R. K. & Karch, F. The open for business model of the bithorax complex in Drosophila. Chromosoma 124, 293–307 (2015).

    Article  CAS  Google Scholar 

  124. Nicodemi, M. & Prisco, A. Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys. J. 96, 2168–2177 (2009).

    Article  CAS  Google Scholar 

  125. Mirny, L. A. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

    Article  CAS  Google Scholar 

  126. Nicodemi, M. & Bianco, S. Chromosomes phase transition to function. Biophys. J. 119, 724–725 (2020).

    Article  CAS  Google Scholar 

  127. Mirny, L. A., Imakaev, M. & Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58, 142–152 (2019).

    Article  CAS  Google Scholar 

  128. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating domains. Sci. Adv. 5, eaaw1668 (2019).

    Article  CAS  Google Scholar 

  129. Bickmore, W. A. V. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67–84 (2013).

    Article  CAS  Google Scholar 

  130. Bickmore, W. A. & Van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    Article  CAS  Google Scholar 

  131. Yildirim, A., Boninsegna, L., Zhan, Y. & Alber, F. Uncovering the principles of genome folding by 3D chromatin modeling. Cold Spring Harb. Perspect. Biol. 14, a039693 (2022).

    Article  CAS  Google Scholar 

  132. Conte, M. et al. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation. Nat. Commun. 11, 3289 (2020).

    Article  CAS  Google Scholar 

  133. Espinola, S. M. et al. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat. Genet. 53, 477–486 (2021). This paper reported that ‘loop-dots’ at the docs gene cluster form before TADs and are stable independently of transcription state.

    Article  CAS  Google Scholar 

  134. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  Google Scholar 

  135. Khanna, N., Zhang, Y., Lucas, J. S., Dudko, O. K. & Murre, C. Chromosome dynamics near the sol–gel phase transition dictate the timing of remote genomic interactions. Nat. Commun. 10, 2771 (2019).

    Article  Google Scholar 

  136. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018). This paper describes two-point live imaging in D. melanogaster embryos with live readout of mRNA activity, and demonstrates strong correlation of E-P proximity and promoter firing for a synthetic transgene, within 4–8 minutes, in parallel work to Alexander et al. (2019).

    Article  CAS  Google Scholar 

  137. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022). This article describes live-cell imaging that shows that chromatin loops are highly dynamic and short-lived, in parallel work to Mach et al. (2022).

    Article  CAS  Google Scholar 

  138. Mach, P. et al. Live-cell imaging and physical modeling reveal control of chromosome folding dynamics by cohesin and CTCF. Preprint at bioRxiv https://doi.org/10.1101/2022.03.03.482826 (2022). This paper describes live-cell imaging that shows that chromatin loops are highly dynamic and short-lived, in parallel work to Gabriele et al. (2022).

    Article  Google Scholar 

  139. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    Article  CAS  Google Scholar 

  140. Abramo, K. et al. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21, 1393–1402 (2019).

    Article  CAS  Google Scholar 

  141. Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).

    Article  CAS  Google Scholar 

  142. Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018).

    Article  CAS  Google Scholar 

  143. Oudelaar, A. M. et al. A revised model for promoter competition based on multi-way chromatin interactions at the α-globin locus. Nat. Commun. 10, 5412 (2019).

    Article  Google Scholar 

  144. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    Article  CAS  Google Scholar 

  145. Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).

    Article  CAS  Google Scholar 

  146. Cheutin, T. & Cavalli, G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit. Rev. Biochem. Mol. Biol. 54, 399–417 (2019).

    Article  CAS  Google Scholar 

  147. Zenk, F. et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593, 289–293 (2021).

    Article  CAS  Google Scholar 

  148. Weber, C. M. et al. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).

    Article  CAS  Google Scholar 

  149. Kim, J. & Kingston, R. E. The CBX family of proteins in transcriptional repression and memory. J. Biosci. 45, 16 (2020).

    Article  CAS  Google Scholar 

  150. Narlikar, G. J. Phase-separation in chromatin organization. J. Biosci. 45, 5 (2020).

    Article  CAS  Google Scholar 

  151. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  Google Scholar 

  152. Strom, A. R. & Brangwynne, C. P. The liquid nucleome–phase transitions in the nucleus at a glance. J. Cell Sci. 132, jcs235093 (2019).

    Article  CAS  Google Scholar 

  153. Finn, E. H. & Misteli, T. A genome disconnect. Nat. Genet. 51, 1205–1206 (2019).

    Article  CAS  Google Scholar 

  154. Xiao, J. Y., Hafner, A. & Boettiger, A. N. How subtle changes in 3D structure can create large changes in transcription. eLife 10, e64320 (2021).

    Article  CAS  Google Scholar 

  155. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  Google Scholar 

  156. Rajpurkar, A. R., Mateo, L. J., Murphy, S. E. & Boettiger, A. N. Deep learning connects DNA traces to transcription to reveal predictive features beyond enhancer–promoter contact. Nat. Commun. 12, 3423 (2021).

    Article  CAS  Google Scholar 

  157. Mir, M., Bickmore, W., Furlong, E. E. M. & Narlikar, G. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 146, dev182766 (2019).

    Article  CAS  Google Scholar 

  158. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  CAS  Google Scholar 

  159. Xie, L. et al. 3D ATAC-PALM: super-resolution imaging of the accessible genome. Nat. Methods 17, 430–436 (2020).

    Article  CAS  Google Scholar 

  160. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Preprint at bioRxiv https://doi.org/10.1101/2022.02.17.480825 (2022).

    Article  Google Scholar 

  161. Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).

    Article  CAS  Google Scholar 

  162. Jia, B. B., Jussila, A., Kern, C., Zhu, Q. & Ren, B. A spatial genome aligner for multiplexed DNA-FISH. Preprint at bioRxiv https://doi.org/10.1101/2022.03.25.485845 (2022).

    Article  Google Scholar 

  163. Atkinson, T. J. & Halfon, M. S. Regulation of gene expression in the genomic context. Comput. Struct. Biotechnol. J. 9, e201401001 (2014).

    Article  Google Scholar 

  164. Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

    Article  CAS  Google Scholar 

  165. Juven-Gershon, T. & Kadonaga, J. T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339, 225–229 (2010).

    Article  CAS  Google Scholar 

  166. Halfon, M. S. Studying transcriptional enhancers: the founder fallacy, validation creep, and other biases. Trends Genet. 35, 93–103 (2019).

    Article  CAS  Google Scholar 

  167. Catarino, R. R., Neumayr, C. & Stark, A. Promoting transcription over long distances. Nat. Genet. 49, 972–973 (2017).

    Article  CAS  Google Scholar 

  168. Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    Article  CAS  Google Scholar 

  169. Wang, Y. et al. Genome oligopaint via local denaturation fluorescence in situ hybridization. Mol. Cell https://doi.org/10.1016/j.molcel.2021.02.011 (2021).

    Article  Google Scholar 

  170. Brown, J. M. et al. A tissue-specific self-interacting chromatin domain forms independently of enhancer–promoter interactions. Nat. Commun. 9, 3849 (2018).

    Article  Google Scholar 

  171. Beckwith, K. S. et al. Visualization of loop extrusion by DNA nanoscale tracing in single human cells. Preprint at bioRxiv https://doi.org/10.1101/2021.04.12.439407 (2021).

    Article  Google Scholar 

  172. Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication. Genes Dev. 36, 7–16 (2022).

    Article  CAS  Google Scholar 

  173. Barinov, L., Ryabichko, S., Bialek, W. & Gregor, T. Transcription-dependent spatial organization of a gene locus. Preprint at arXiv https://doi.org/10.48550/arXiv.2012.15819 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Boettiger laboratory for critical discussions and C. Walker for detailed feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched, discussed, wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Alistair Boettiger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks M. Nollmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Topologically associating domains

(TADs). These are defined on population-level contact-frequency maps as domains of higher interaction frequency within a region than between regions.

Mediator complex

A multisubunit protein complex that is a general regulator of transcription by RNA polymerase II.

Cohesin complex

A multisubunit protein complex that mediates sister-chromatid cohesion in mitosis and is essential for topologically associating domain (TAD) formation.

CTCF

The CCCTC binding factor (CTCF) is a zinc-finger transcription factor that is enriched at the boundaries of TADs.

Tethers

These are cis-regulatory elements that function to bring together distal DNA elements.

Phase separation

The process by which a mixture (such as oil and water) spontaneously separates into distinct phases, with molecules of one type separating from molecules of a second type.

Enthalpic

Interactions driven by the binding energy between molecules, such as homotypic interactions among chromatin states.

Loop extrusion

A model of how CTCF and cohesin are thought to form topologically associating domains (TADs), whereby cohesin is loaded onto the DNA and extrudes a loop until it is blocked by CTCF bound at the base of the loop.

Chromosome territories

Specific, largely non-overlapping areas in the nucleus that each chromosome occupies.

Diffraction limit

The distance limit below which two objects cannot be distinguished by conventional light microscopy. It depends on the wavelength of light and the objective used.

Fiducial markers

Markers used to correct for drift that may occur during an experiment. These can be fluorescent beads or labels on the DNA that remain constant throughout the imaging experiment.

Entropic

Changes that increase the number of accessible microstates in the system and do not require input energy.

Convolutional neural networks

(CNNs). Algorithms designed to learn from the data to uncover connections. CNNs are frequently used in image recognition and have been increasingly used to uncover relationships in biological data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafner, A., Boettiger, A. The spatial organization of transcriptional control. Nat Rev Genet 24, 53–68 (2023). https://doi.org/10.1038/s41576-022-00526-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00526-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing