Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A broader strategy for osteoporosis interventions

Abstract

Approximately 50% of women experience at least one bone fracture postmenopause. Current screening approaches target anti-fracture interventions to women aged >60 years who satisfy clinical risk and bone mineral density criteria for osteoporosis. Intervention is only recommended in 7–25% of those women screened currently, well short of the 50% who experience fractures. Large screening trials have not shown clinically significant decreases in the total fracture numbers. By contrast, six large clinical trials of anti-resorptive therapies (for example, bisphosphonates) have demonstrated substantial decreases in the number of fractures in women not identified as being at high risk of fracture. This finding suggests that broader use of generic bisphosphonates in women selected by age or fracture risk would result in a reduction in total fracture numbers, a strategy likely to be cost-effective. The utility of the current bone density definition of osteoporosis, which neither corresponds with who suffers fractures nor defines who should be treated, requires reappraisal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of zoledronate treatment on fracture risk in osteopenia.

Similar content being viewed by others

References

  1. Jones, G. et al. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporos. Int. 4, 277–282 (1994).

    CAS  PubMed  Google Scholar 

  2. Papaioannou, A. et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 182, 1864–1873 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Cosman, F. et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Compston, J. et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 12, 43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanis, J. A. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019).

    CAS  PubMed  Google Scholar 

  6. Shepstone, L. et al. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet 391, 741–747 (2017).

    PubMed  Google Scholar 

  7. Rubin, K. H. et al. Effectiveness of a two-step population-based osteoporosis screening program using FRAX: the randomized Risk-stratified Osteoporosis Strategy Evaluation (ROSE) study. Osteoporos. Int. 29, 567–578 (2018).

    CAS  PubMed  Google Scholar 

  8. Merlijn, T. et al. The effect of a screening and treatment program for the prevention of fractures in older women: a randomized pragmatic trial. J. Bone Miner. Res. 34, 1993–2000 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Kanis, J. A. et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos. Int. 11, 669–674 (2000).

    CAS  PubMed  Google Scholar 

  10. Cummings, S. R., Black, D. M. & Rubin, S. M. Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. JAMA Intern. Med. 149, 2445–2448 (1989).

    CAS  Google Scholar 

  11. Gullberg, B., Johnell, O. & Kanis, J. A. World-wide projections for hip fracture. Osteoporos. Int. 7, 407–413 (1997).

    CAS  PubMed  Google Scholar 

  12. Tatangelo, G. et al. The cost of osteoporosis, osteopenia, and associated fractures in Australia in 2017. J. Bone Miner. Res. 34, 616–625 (2019).

    PubMed  Google Scholar 

  13. Kanis, J. A., Melton, L. J., Christiansen, C., Johnston, C. C. & Khaltaev, N. Perspective: the diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994).

    CAS  PubMed  Google Scholar 

  14. Siris, E. S. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch. Int. Med. 164, 1108–1112 (2004).

    Google Scholar 

  15. Trajanoska, K. et al. Fracture incidence and secular trends between 1989 and 2013 in a population based cohort: the Rotterdam study. Bone 114, 116–124 (2018).

    PubMed  Google Scholar 

  16. Tei, R. M. H., Ramlau-Hansen, C. H., Plana-Ripoll, O., Brink, O. & Langdahl, B. L. OFELIA: prevalence of osteoporosis in fragility fracture patients. Calcif. Tissue Int. 104, 102–114 (2019).

    CAS  PubMed  Google Scholar 

  17. Mai, H. T. et al. Two-thirds of all fractures are not attributable to osteoporosis and advancing age: implications for fracture prevention. J. Clin. Endocrinol. Metab. 104, 3514–3520 (2019).

    PubMed  Google Scholar 

  18. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos. Int. 18, 1109–1117 (2007).

    CAS  PubMed  Google Scholar 

  20. Crandall, C. J., Schousboe, J. T., Morin, S. N., Lix, L. M. & Leslie, W. Performance of FRAX and FRAX-based treatment thresholds in women aged 40 years and older: the Manitoba BMD registry. J. Bone Miner. Res. 34, 1419–1427 (2019).

    PubMed  Google Scholar 

  21. Crandall, C. J. et al. Bone mineral density as a predictor of subsequent wrist fractures: findings from the women’s health initiative study. J. Clin. Endocrinol. Metab. 100, 4315–4324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Crandall, C. J. et al. Do additional clinical risk factors improve the performance of Fracture Risk Assessment Tool (FRAX) among postmenopausal women? Findings from the Women’s Health Initiative observational study and clinical trials. JBMR Plus 3, e10239 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Merlijn, T., Swart, K., Netelenbos, C. & Elders, P. The effect of screening of high fracture risk and subsequent treatment on osteoporotic fractures: a systematic review and meta-analysis. J. Bone Miner. Res. 33, 436 (2018).

    Google Scholar 

  24. Turner, D. A. et al. The cost-effectiveness of screening in the community to reduce osteoporotic fractures in older women in the UK: economic evaluation of the SCOOP study. J. Bone Miner. Res. 33, 845–851 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. McCloskey, E. V. et al. Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J. Bone Miner. Res. 22, 135–141 (2007).

    CAS  PubMed  Google Scholar 

  26. Ensrud, K. E. et al. Effects of raloxifene on fracture risk in postmenopausal women: the raloxifene use for the heart trial. J. Bone Miner. Res. 23, 112–120 (2008).

    CAS  PubMed  Google Scholar 

  27. Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene — results from a 3-year randomized clinical trial. JAMA 282, 637–645 (1999).

    CAS  PubMed  Google Scholar 

  28. Wilson, C. et al. Adjuvant zoledronic acid reduces fractures in breast cancer patients; an AZURE (BIG 01/04) study. Eur. J. Cancer 94, 70–78 (2018).

    CAS  PubMed  Google Scholar 

  29. Gnant, M. et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386, 433–443 (2015).

    CAS  PubMed  Google Scholar 

  30. Reid, I. R. et al. Fracture prevention with zoledronate in older women with osteopenia. N. Engl. J. Med. 379, 2407–2416 (2018).

    CAS  PubMed  Google Scholar 

  31. Reid, I. R. et al. Anti-fracture efficacy of zoledronate in subgroups of osteopenic postmenopausal women: secondary analysis of a randomized controlled trial. J. Intern. Med. 286, 221–229 (2019).

    CAS  PubMed  Google Scholar 

  32. Siris, E. S., Simon, J. A., Barton, I. P., McClung, M. R. & Grauer, A. Effects of risedronate on fracture risk in postmenopausal women with osteopenia. Osteoporos. Int. 19, 681–686 (2008).

    CAS  PubMed  Google Scholar 

  33. National Institute for Health and Care Excellence. Bisphosphonates for treating osteoporosis. https://www.nice.org.uk/guidance/ta464 (NICE, 2019).

  34. Grey, A. et al. Duration of antiresorptive activity of zoledronate in postmenopausal women with osteopenia: a randomized, controlled multidose trial. CMAJ 189, E1130–E1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Reid, I. R. et al. Reduction in the risk of clinical fractures after a single dose of zoledronic acid 5 milligrams. J. Clin. Endocrinol. Metab. 98, 557–563 (2013).

    CAS  PubMed  Google Scholar 

  36. Lin, T. C., Yang, C. Y., Kao Yang, Y. H. & Lin, S. J. Incidence and risk of osteonecrosis of the jaw among the Taiwan osteoporosis population. Osteoporos. Int. 25, 1503–1511 (2014).

    PubMed  Google Scholar 

  37. Khan, A. A. et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J. Bone Miner. Res. 30, 3–23 (2015).

    PubMed  Google Scholar 

  38. Geiger, E. J. et al. Risk factors for atypical femur fractures in a large, prospective cohort study: a multivariable analysis from the Southern California Osteoporosis Cohort Study (SOCS). J. Bone Miner. Res. 33, 103 (2018).

    Google Scholar 

  39. Schilcher, J., Koeppen, V., Aspenberg, P. & Michaëlsson, K. Risk of atypical femoral fracture during and after bisphosphonate use. N. Engl. J. Med. 371, 974–976 (2014).

    PubMed  Google Scholar 

  40. Abrahamsen, B., Eiken, P., Prieto-Alhambra, D. & Eastell, R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ 353, i3365 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Black, D. M. et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J. Bone Miner. Res. 27, 243–254 (2012).

    CAS  PubMed  Google Scholar 

  42. Black, D. M. et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J. Bone Miner. Res. 30, 934–944 (2015).

    CAS  PubMed  Google Scholar 

  43. Adams, A. L. et al. Do drug holidays reduce atypical femur fracture risk? Results from the Southern California Osteoporosis Cohort Study (SOCS). J. Bone Miner. Res. 33, 2 (2018).

    Google Scholar 

  44. Anon. Is the concept of hypertension as a disease unhelpful? Lancet 394, 611 (2019).

    Google Scholar 

  45. Cauley, J. A. et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density — the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Reid.

Ethics declarations

Competing interests

I.R.R. declares consultancy fees from Lilly, Amgen and Merck, as well as previous research funding from Merck and Amgen.

Additional information

Peer review information

Nature Reviews Endocrinology thanks E. Bogoch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, I.R. A broader strategy for osteoporosis interventions. Nat Rev Endocrinol 16, 333–339 (2020). https://doi.org/10.1038/s41574-020-0339-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0339-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing