Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of ceramides in metabolic disorders: when size and localization matters

Abstract

Ceramide accumulation is a hallmark in the manifestation of numerous obesity-related diseases, such as type 2 diabetes mellitus and atherosclerosis. Until the early 2000s, ceramides were viewed as a homogenous class of sphingolipids. However, it has now become clear that ceramides exert fundamentally different effects depending on the specific fatty acyl chain lengths, which are integrated into ceramides by a group of enzymes known as dihydroceramide synthases. In addition, alterations in ceramide synthesis, trafficking and metabolism in specific cellular compartments exert distinct consequences on metabolic homeostasis. Here, we examine the emerging concept of how the intracellular localization of ceramides with distinct acyl chain lengths can regulate glucose metabolism, thus emphasizing their potential as targets in the development of novel and specific therapies for obesity and obesity-associated diseases.

Key points

  • Increased levels of ceramides during obesity contribute to cellular dysfunction in key metabolic tissues, which results in insulin resistance.

  • The synthesis of ceramides with varying acyl chain lengths is regulated by six ceramide synthases (CerS1–CerS6), and their expression profiles differ throughout the body.

  • Genetic manipulation of individual ceramide synthases has identified a highly regulated specificity of distinct acyl chain ceramides in the pathogenesis of obesity, type 2 diabetes mellitus, hepatocellular carcinoma, myelination, hair loss and skin barrier function.

  • The location of ceramides with different acyl chains is important for cellular function and could contribute to metabolic tissue function.

  • Targeting ceramides with different acyl chains within different intracellular locations could help to provide new therapeutics for a range of obesity-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sphingolipid metabolism pathway.
Fig. 2: Subcellular compartmentalisation of sphingolipid metabolism.

Similar content being viewed by others

References

  1. Zimmet, P., Alberti, K. G. M. M. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    CAS  PubMed  Google Scholar 

  2. Horowitz, J. F. et al. Effect of short-term fasting on lipid kinetics in lean and obese women. Am. J. Physiol. 276, E278–E284 (1999).

    CAS  PubMed  Google Scholar 

  3. Bickerton, A. S. et al. Adipose tissue fatty acid metabolism in insulin-resistant men. Diabetologia 51, 1466–1474 (2008).

    CAS  PubMed  Google Scholar 

  4. Bonen, A. et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 18, 1144–1146 (2004).

    CAS  PubMed  Google Scholar 

  5. Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aas, V., Kase, E. T., Solberg, R., Jensen, J. & Rustan, A. C. Chronic hyperglycaemia promotes lipogenesis and triacylglycerol accumulation in human skeletal muscle cells. Diabetologia 47, 1452–1461 (2004).

    CAS  PubMed  Google Scholar 

  7. Zhou, Y. T. et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl Acad. Sci. USA 97, 1784–1789 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Assimacopoulos-Jeannet, F. Fat storage in pancreas and in insulin-sensitive tissues in pathogenesis of type 2 diabetes. Int. J. Obes. Relat. Metab. Disord. 28, S53–S57 (2004).

    CAS  PubMed  Google Scholar 

  9. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    CAS  PubMed  Google Scholar 

  10. Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    CAS  PubMed  Google Scholar 

  11. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

    CAS  PubMed  Google Scholar 

  12. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    CAS  PubMed  Google Scholar 

  13. Mandon, E. C., Ehses, I., Rother, J., van Echten, G. & Sandhoff, K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J. Biol. Chem. 267, 11144–11148 (1992).

    CAS  PubMed  Google Scholar 

  14. Pewzner-Jung, Y., Ben-Dor, S. & Futerman, A. H. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001–25005 (2006).

    CAS  PubMed  Google Scholar 

  15. Sassa, T., Hirayama, T. & Kihara, A. Enzyme activities of the ceramide synthases CERS2-6 are regulated by phosphorylation in the C-terminal region. J. Biol. Chem. 291, 7477–7487 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Laviad, E. L., Kelly, S., Merrill, A. H. Jr. & Futerman, A. H. Modulation of ceramide synthase activity via dimerization. J. Biol. Chem. 287, 21025–21033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizutani, Y., Kihara, A. & Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizutani, Y., Kihara, A. & Igarashi, Y. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem. J. 398, 531–538 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H. Jr. & Futerman, A. H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003).

    CAS  PubMed  Google Scholar 

  20. Menuz, V. et al. Protection of C. elegans from anoxia by HYL-2 ceramide synthase. Science 324, 381–384 (2009).

    CAS  PubMed  Google Scholar 

  21. Ebel, P. et al. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J. Biol. Chem. 288, 21433–21447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pewzner-Jung, Y. et al. A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J. Biol. Chem. 285, 10911–10923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pewzner-Jung, Y. et al. A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J. Biol. Chem. 285, 10902–10910 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gosejacob, D. et al. Ceramide synthase 5 is essential to maintain C16:0-ceramide pools and contributes to the development of diet-induced obesity. J. Biol. Chem. 291, 6989–7003 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, L. et al. A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLOS Genet. 7, e1002063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Turpin-Nolan, S. M. et al. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep. 26, 1–10.e7 (2019).

    CAS  PubMed  Google Scholar 

  27. Meikle, P. J. & Summers, S. A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 13, 79–91 (2017).

    CAS  PubMed  Google Scholar 

  28. Bauer, R. et al. Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. EMBO J. 28, 3706–3716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Venkataraman, K. et al. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J. Biol. Chem. 277, 35642–35649 (2002).

    CAS  PubMed  Google Scholar 

  30. Tserng, K. Y. & Griffin, R. Quantitation and molecular species determination of diacylglycerols, phosphatidylcholines, ceramides, and sphingomyelins with gas chromatography. Anal. Biochem. 323, 84–93 (2003).

    CAS  PubMed  Google Scholar 

  31. Ardail, D. et al. Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria. FEBS Lett. 488, 160–164 (2001).

    CAS  PubMed  Google Scholar 

  32. White-Gilbertson, S. et al. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28, 1132–1141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sridevi, P. et al. Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Exp. Cell Res. 316, 78–91 (2010).

    CAS  PubMed  Google Scholar 

  34. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  35. Ozcan, L. & Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ning, J. et al. Constitutive role for IRE1α-XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. Endocrinology 152, 2247–2255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Lipson, K. L. et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4, 245–254 (2006).

    CAS  PubMed  Google Scholar 

  39. Deldicque, L. et al. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 299, E695–E705 (2010).

    CAS  PubMed  Google Scholar 

  40. Soeda, J. et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J. Physiol. Biochem. 72, 281–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seo, J. et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58, 2565–2573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Usui, M. et al. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61, 1118–1128 (2012).

    CAS  PubMed  Google Scholar 

  43. Turpin, S. M., Lancaster, G. I., Darby, I., Febbraio, M. A. & Watt, M. J. Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am. J. Physiol. Endocrinol. Metab. 291, E1341–E1350 (2006).

    CAS  PubMed  Google Scholar 

  44. Holland, W. L. et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Novgorodov, S. A. et al. Developmentally regulated ceramide synthase 6 increases mitochondrial Ca2+ loading capacity and promotes apoptosis. J. Biol. Chem. 286, 4644–4658 (2011).

    CAS  PubMed  Google Scholar 

  46. Yu, J. et al. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J. Biol. Chem. 282, 25940–25949 (2007).

    CAS  PubMed  Google Scholar 

  47. Contreras, C. et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Z. et al. Induction of ER stress-mediated apoptosis by ceramide via disruption of ER Ca2+ homeostasis in human adenoid cystic carcinoma cells. Cell Biosci. 4, 71 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab. 291, E275–E281 (2006).

    CAS  PubMed  Google Scholar 

  50. Montgomery, M. K. et al. Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: a beneficial role for very long-chain sphingolipid species. Biochim. Biophys. Acta 1861, 1828–1839 (2016).

    CAS  PubMed  Google Scholar 

  51. Senkal, C. E., Ponnusamy, S., Bielawski, J., Hannun, Y. A. & Ogretmen, B. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J. 24, 296–308 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Choi, S. et al. Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells. FASEB J. 32, 5724–5736 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. González-García, I. et al. Estradiol regulates energy balance by ameliorating hypothalamic ceramide-induced ER stress. Cell Rep. 25, 413–423.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Senkal, C. E. et al. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J. Biol. Chem. 286, 42446–42458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fukasawa, M., Nishijima, M. & Hanada, K. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J. Cell Biol. 144, 673–685 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamaji, T. & Hanada, K. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16, 101–122 (2015).

    CAS  PubMed  Google Scholar 

  58. Kumagai, K. et al. CERT mediates intermembrane transfer of various molecular species of ceramides. J. Biol. Chem. 280, 6488–6495 (2005).

    CAS  PubMed  Google Scholar 

  59. Kudo, N. et al. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc. Natl Acad. Sci. USA 105, 488–493 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gjoni, E. et al. Glucolipotoxicity impairs ceramide flow from the endoplasmic reticulum to the Golgi apparatus in INS-1 β-cells. PLOS One 9, e110875 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Boslem, E. et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem. J. 435, 267–276 (2011).

    CAS  PubMed  Google Scholar 

  62. Wang, X. et al. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J. Cell Biol. 184, 143–158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, L.-K., Choudhary, V., Toulmay, A. & Prinz, W. A. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Galadari, S., Rahman, A., Pallichankandy, S., Galadari, A. & Thayyullathil, F. Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis. 12, 98 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Perry, R. J. & Ridgway, N. D. Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta 1734, 220–234 (2005).

    CAS  PubMed  Google Scholar 

  66. Hsueh, Y. W., Giles, R., Kitson, N. & Thewalt, J. The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys. J. 82, 3089–3095 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, H. W., Goldberg, E. M. & Zidovetzki, R. Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys. J. 77, 1489–1497 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Silva, L., de Almeida, R. F., Fedorov, A., Matos, A. P. & Prieto, M. Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane. Mol. Membr. Biol. 23, 137–148 (2006).

    CAS  PubMed  Google Scholar 

  69. Grassme, H. et al. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596 (2001).

    CAS  PubMed  Google Scholar 

  70. Grassme, H., Cremesti, A., Kolesnick, R. & Gulbins, E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22, 5457–5470 (2003).

    CAS  PubMed  Google Scholar 

  71. Grassme, H., Riethmuller, J. & Gulbins, E. Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170 (2007).

    CAS  PubMed  Google Scholar 

  72. Blouin, C. M. et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59, 600–610 (2010).

    CAS  PubMed  Google Scholar 

  73. Park, J. W. et al. Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57, 525–532 (2013).

    CAS  PubMed  Google Scholar 

  74. Mahfouz, R. et al. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight. PLOS One 9, e101865 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Boon, J. et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401–410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McInnes, J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr. Metab. 10, 63 (2013).

    Google Scholar 

  77. Bionda, C., Portoukalian, J., Schmitt, D., Rodriguez-Lafrasse, C. & Ardail, D. Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem. J. 382, 527–533 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mesicek, J. et al. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 22, 1300–1307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552 (2019).

    CAS  PubMed  Google Scholar 

  80. Zigdon, H. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947–4956 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Paola, M., Cocco, T. & Lorusso, M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39, 6660–6668 (2000).

    PubMed  Google Scholar 

  82. Gudz, T. I., Tserng, K. Y. & Hoppel, C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 272, 24154–24158 (1997).

    CAS  PubMed  Google Scholar 

  83. Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sims, K. et al. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J. Biol. Chem. 285, 38568–38579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Scarlatti, F. et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279, 18384–18391 (2004).

    CAS  PubMed  Google Scholar 

  86. Jiang, W. & Ogretmen, B. Autophagy paradox and ceramide. Biochim. Biophys. Acta 1841, 783–792 (2014).

    CAS  PubMed  Google Scholar 

  87. Restelli, L. M. et al. Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep. 24, 1407–1414 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lucki, N. C. & Sewer, M. B. Nuclear sphingolipid metabolism. Annu. Rev. Physiol. 74, 131–151 (2012).

    CAS  PubMed  Google Scholar 

  89. Voelzmann, A. et al. Nuclear Drosophila CerS Schlank regulates lipid homeostasis via the homeodomain, independent of the lag1p motif. FEBS Lett. 590, 971–981 (2016).

    CAS  PubMed  Google Scholar 

  90. Tsugane, K., Tamiya-Koizumi, K., Nagino, M., Nimura, Y. & Yoshida, S. A possible role of nuclear ceramide and sphingosine in hepatocyte apoptosis in rat liver. J. Hepatol. 31, 8–17 (1999).

    CAS  PubMed  Google Scholar 

  91. Chocian, G. et al. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei. Mol. Cell Biochem. 340, 125–131 (2010).

    CAS  PubMed  Google Scholar 

  92. Chatelut, M. et al. Natural ceramide is unable to escape the lysosome, in contrast to a fluorescent analogue. FEBS Lett. 426, 102–106 (1998).

    CAS  PubMed  Google Scholar 

  93. Ballabio, A. & Gieselmann, V. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793, 684–696 (2009).

    CAS  PubMed  Google Scholar 

  94. Okino, N. et al. The reverse activity of human acid ceramidase. J. Biol. Chem. 278, 29948–29953 (2003).

    CAS  PubMed  Google Scholar 

  95. Li, C. M. et al. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79, 218–224 (2002).

    CAS  PubMed  Google Scholar 

  96. Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    CAS  PubMed  Google Scholar 

  98. Chavez, J. A., Holland, W. L., Bar, J., Sandhoff, K. & Summers, S. A. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 280, 20148–20153 (2005).

    CAS  PubMed  Google Scholar 

  99. Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fujimoto, T. & Parton, R. G. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb. Perspect. Biol. 3, a004838 (2011).

    PubMed  PubMed Central  Google Scholar 

  101. Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mason, R. R. et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol. Metab. 3, 652–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Trevino, M. B. et al. Liver perilipin 5 expression worsens hepatosteatosis but not insulin resistance in high fat-fed mice. Mol. Endocrinol. 29, 1414–1425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bartholomew, S. R. et al. Distinct cellular pools of perilipin 5 point to roles in lipid trafficking. Biochim. Biophys. Acta 1821, 268–278 (2012).

    CAS  PubMed  Google Scholar 

  105. Haberkant, P. et al. Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions. ACS Chem. Biol. 11, 222–230 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M.T.-N. was supported by the Alexander von Humboldt Foundation fellowship and CECAD Senior Postdoctoral Research Grant. J.C.B. was supported by the Leibniz Preis (BR1492/7-1), the Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases (CECAD; funded by the DFG within the Excellence Initiative by German Federal and State Governments), by the Federal Government (BMBF) through collaboration in Deutsche Zentrum für Diabetesforschung e.V. (DZD, FKZ 82DZD00502) and the Cologne Center for Molecular Medicine Cologne (CMMC).

Author information

Authors and Affiliations

Authors

Contributions

S.M.T.-N. and J.C.B. researched data for the article, provided substantial contributions to discussions of the content, reviewed and/or edited the manuscript before submission and contributed equally to the writing of the article.

Corresponding author

Correspondence to Jens C. Brüning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M. Oresic, P. Meikle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turpin-Nolan, S.M., Brüning, J.C. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol 16, 224–233 (2020). https://doi.org/10.1038/s41574-020-0320-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0320-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing