Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of stress kinases in metabolic disease

Abstract

Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.

Key points

  • The activation of stress-activated protein kinases (SAPKs) is associated with obesity and metabolic alterations such as insulin resistance.

  • JNK and p38 function in diverse signalling pathways that affect metabolic processes such as insulin sensitivity, thermogenesis, adipogenesis and lipolysis.

  • The activation of SAPKs in immune cells triggers inflammation in different tissues and affects systemic metabolism in obesity.

  • SAPKs have tissue-specific and substrate-specific functions and their activation is involved in obesity-related disorders such as non-alcoholic steatohepatitis, liver cancer, heart failure and complications of type 2 diabetes mellitus.

  • Targeting SAPK pathways in different tissues is a potential therapeutic approach for the prevention and treatment of metabolic syndrome and associated disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stress-activated protein kinase signalling pathways.
Fig. 2: Role of JNKs in the central nervous system.
Fig. 3: p38 and JNK kinases are crucial molecular players in adipose tissue.
Fig. 4: Stress kinases control metabolism and insulin resistance in muscle.
Fig. 5: SAPK pathways in the liver.
Fig. 6: p38 and JNK regulate the development of liver cancer.
Fig. 7: p38 controls physiological and pathophysiological heart development and growth.

Similar content being viewed by others

References

  1. Upadhyay, J., Farr, O., Perakakis, N., Ghaly, W. & Mantzoros, C. Obesity as a Disease. Med. Clin. North. Am. 102, 13–33 (2018).

    Google Scholar 

  2. Ritchie, H. & Roser, M. Obesity. Our World In Data https://ourworldindata.org/obesity (2020).

  3. Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Euro. J. Biochem. 268, 5001–5010 (2001).

    CAS  Google Scholar 

  4. Xiao, Y., Liddle, J. C., Pardi, A. & Ahn, N. G. Dynamics of protein kinases: insights from nuclear magnetic resonance. Acc. Chem. Res. 48, 1106–1114 (2015).

    CAS  Google Scholar 

  5. Manieri, E. & Sabio, G. Stress kinases in the modulation of metabolism and energy balance. J. Mol. Endocrinol. 55, R11–R22 (2015).

    CAS  Google Scholar 

  6. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008). This paper demonstrates, for first time, the dual role of JNK1 in controlling obesity and insulin resistance. JNK1 activation promotes insulin resistance in liver independently of obesity, and JNK1 also promotes IL-6 production in adipocytes, thereby blocking insulin signalling in liver.

    CAS  Google Scholar 

  7. Sabio, G. et al. Prevention of steatosis by hepatic JNK1. Cell Metab. 10, 491–498 (2009).

    CAS  Google Scholar 

  8. Sabio, G. et al. Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Mol. Cell. Biol. 30, 106–115 (2010).

    CAS  Google Scholar 

  9. Sabio, G. et al. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Gen. Dev. 24, 256–264 (2010).

    CAS  Google Scholar 

  10. Vernia, S. et al. Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. eLife 5, e10031 (2016).

    Google Scholar 

  11. Gonzalez-Teran, B. et al. p38gamma and p38delta reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 35, 536–552 (2016). This paper shows that p38γ and p38δ control neutrophil infiltration in the liver.

    CAS  Google Scholar 

  12. Adhikary, L. et al. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 47, 1210–1222 (2004).

    CAS  Google Scholar 

  13. Adhikary, G., Sun, Y. & Pearlman, E. C-Jun NH2 terminal kinase (JNK) is an essential mediator of Toll-like receptor 2-induced corneal inflammation. J. Leukoc. Biol. 83, 991–997 (2008).

    CAS  Google Scholar 

  14. Carlson, C. J., Koterski, S., Sciotti, R. J., Poccard, G. B. & Rondinone, C. M. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes 52, 634–641 (2003).

    CAS  Google Scholar 

  15. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    CAS  Google Scholar 

  16. Gupta, S. et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760–2770 (1996).

    CAS  Google Scholar 

  17. Beardmore, V. A. et al. Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol. Cell. Biol. 25, 10454–10464 (2005).

    CAS  Google Scholar 

  18. Tomas-Loba, A. et al. p38gamma is essential for cell cycle progression and liver tumorigenesis. Nature 568, 557–560 (2019). This work found that p38γ activates cell cycle progression under stress stimuli and that lack of p38γ protects against liver cancer development.

    CAS  Google Scholar 

  19. Matesanz, N. et al. p38alpha blocks brown adipose tissue thermogenesis through p38delta inhibition. PLoS Biol. 16, e2004455 (2018). This paper discovered the opposite roles of two p38 family members, p38α and p38δ, in BAT thermogenesis, whole body energy expenditure and in diet-induced obesity.

    Google Scholar 

  20. Ittner, A. et al. Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung. J. Exp. Med. 209, 2229–2246 (2012).

    CAS  Google Scholar 

  21. Solinas, G. & Becattini, B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol. Metab. 6, 174–184 (2017).

    CAS  Google Scholar 

  22. Hotamisligil, G. S. & Davis, R. J. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. 8, a006072 (2016).

    Google Scholar 

  23. Gibala, M. J. et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J. Appl. Physiol. 106, 929–934 (2009).

    CAS  Google Scholar 

  24. Nebreda, A. R. & Porras, A. p38 MAP kinases: beyond the stress response. Trends Biochem. Sci. 25, 257–260 (2000).

    CAS  Google Scholar 

  25. Schieven, G. L. The biology of p38 kinase: a central role in inflammation. Curr. Top. Med. Chem. 5, 921–928 (2005).

    CAS  Google Scholar 

  26. Manning, A. M. & Davis, R. J. Targeting JNK for therapeutic benefit: from junk to gold? Nat. Rev. Drug Discov. 2, 554–565 (2003).

    CAS  Google Scholar 

  27. Morrison, D. K. & Davis, R. J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118 (2003).

    CAS  Google Scholar 

  28. Remy, G. et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell. Signal. 22, 660–667 (2010).

    CAS  Google Scholar 

  29. Cuadrado, A. & Nebreda, A. R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403–417 (2010).

    CAS  Google Scholar 

  30. Gonzalez-Teran, B. et al. p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun. 7, 10477 (2016).

    CAS  Google Scholar 

  31. Enslen, H. & Davis, R. J. Regulation of MAP kinases by docking domains. Biol. Cell 93, 5–14 (2001).

    CAS  Google Scholar 

  32. Tanoue, T. & Nishida, E. Molecular recognitions in the MAP kinase cascades. Cell. Signal. 15, 455–462 (2003).

    CAS  Google Scholar 

  33. Akella, R., Moon, T. M. & Goldsmith, E. J. Unique MAP Kinase binding sites. BBA 1784, 48–55 (2008).

    CAS  Google Scholar 

  34. Sabio, G. et al. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem. J. 380, 19–30 (2004).

    CAS  Google Scholar 

  35. Sabio, G. et al. p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 24, 1134–1145 (2005).

    CAS  Google Scholar 

  36. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  Google Scholar 

  37. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

    CAS  Google Scholar 

  38. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614 (1997).

    CAS  Google Scholar 

  39. Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 305, 2525–2531 (2011).

    CAS  Google Scholar 

  40. Brenner, D. A., O’Hara, M., Angel, P., Chojkier, M. & Karin, M. Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature 337, 661–663 (1989).

    CAS  Google Scholar 

  41. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002). This paper demonstrated, for first time, the importance of a SAPK, JNK1, in the development of obesity and insulin resistance in mice.

    CAS  Google Scholar 

  42. Gehart, H., Kumpf, S., Ittner, A. & Ricci, R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep. 11, 834–840 (2010).

    CAS  Google Scholar 

  43. Lee, J. et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat. Med. 17, 1251–1260 (2011).

    CAS  Google Scholar 

  44. Matesanz, N. et al. MKK6 controls T3-mediated browning of white adipose tissue. Nat. Commun. 8, 856 (2017).

    Google Scholar 

  45. Chung, J. et al. HSP72 protects against obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 105, 1739–1744 (2008).

    CAS  Google Scholar 

  46. Carvalho, B. M. et al. Modulation of double-stranded RNA-activated protein kinase in insulin sensitive tissues of obese humans. Obesity 21, 2452–2457 (2013).

    CAS  Google Scholar 

  47. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    CAS  Google Scholar 

  48. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Google Scholar 

  49. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Google Scholar 

  50. Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859–2865 (1996).

    CAS  Google Scholar 

  51. Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol. 11, e1001485 (2013).

    CAS  Google Scholar 

  52. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).

    CAS  Google Scholar 

  53. Staehr, P. et al. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis. Diabetes 52, 260–267 (2003).

    CAS  Google Scholar 

  54. Machado, M. V. & Diehl, A. M. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150, 1769–1777 (2016).

    CAS  Google Scholar 

  55. Boden, G., Chen, X., Ruiz, J., White, J. V. & Rossetti, L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Invest. 93, 2438–2446 (1994).

    CAS  Google Scholar 

  56. DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 (Suppl. 2), S157–S163 (2009).

    CAS  Google Scholar 

  57. Jung, S. H., Jung, C. H., Reaven, G. M. & Kim, S. H. Adapting to insulin resistance in obesity: role of insulin secretion and clearance. Diabetologia 61, 681–687 (2018).

    CAS  Google Scholar 

  58. Boden, G. et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57, 2438–2444 (2008).

    CAS  Google Scholar 

  59. Zhang, X. et al. Macrophage p38alpha promotes nutritional steatohepatitis through M1 polarization. J. Hepatol. 71, 163–174 (2019).

    CAS  Google Scholar 

  60. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    CAS  Google Scholar 

  61. Han, M. S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013). This was the first study to describe the importance of JNK expressed by myeloid cells infiltrated in adipose tissue in the development of obesity-induced insulin resistance.

    CAS  Google Scholar 

  62. Tsaousidou, E. et al. Distinct roles for JNK and IKK activation in Agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep. 9, 1495–1506 (2014).

    CAS  Google Scholar 

  63. Kreutzer, C. et al. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes 66, 2407–2415 (2017).

    CAS  Google Scholar 

  64. Saghizadeh, M., Ong, J. M., Garvey, W. T., Henry, R. R. & Kern, P. A. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J. Clin. Invest. 97, 1111–1116 (1996).

    CAS  Google Scholar 

  65. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  Google Scholar 

  66. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    CAS  Google Scholar 

  67. Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M. F. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem. 275, 9047–9054 (2000).

    CAS  Google Scholar 

  68. Copps, K. D. et al. Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metab. 11, 84–92 (2010).

    CAS  Google Scholar 

  69. Vernia, S. et al. The PPARalpha-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 20, 512–525 (2014).

    CAS  Google Scholar 

  70. Manieri, E. et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J. Exp. Med. 216, 1108–1119 (2019).

    CAS  Google Scholar 

  71. Gregor, M. F. et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700 (2009).

    CAS  Google Scholar 

  72. C. A. Thaiss et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359,1376–1383 (2018).

    CAS  Google Scholar 

  73. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    CAS  Google Scholar 

  74. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS  Google Scholar 

  75. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006).

    CAS  Google Scholar 

  76. Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  Google Scholar 

  77. Yang, Q., Vijayakumar, A. & Kahn, B. B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 19, 654–672 (2018).

    CAS  Google Scholar 

  78. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    CAS  Google Scholar 

  79. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 (2018). This study shows, for the first time, that imidazole propionate produced by the microbiota impairs insulin signalling through the activation of p38γ, thereby triggering mTORC1 activation through p62.

    CAS  Google Scholar 

  80. Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    CAS  Google Scholar 

  81. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  Google Scholar 

  82. Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. 33, 54–66 (2009).

    CAS  Google Scholar 

  83. Hurrle, S. & Hsu, W. H. The etiology of oxidative stress in insulin resistance. Biomed. J. 40, 257–262 (2017).

    Google Scholar 

  84. Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761 (2004).

    CAS  Google Scholar 

  85. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    CAS  Google Scholar 

  86. Al-Lahham, R., Deford, J. H. & Papaconstantinou, J. Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway. Mol. Cell. Endocrinol. 419, 1–11 (2016).

    CAS  Google Scholar 

  87. de Alvaro, C., Teruel, T., Hernandez, R. & Lorenzo, M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J. Biol. Chem. 279, 17070–17078 (2004).

    Google Scholar 

  88. Timper, K. & Bruning, J. C. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model. Mech. 10, 679–689 (2017).

    CAS  Google Scholar 

  89. Belgardt, B. F. et al. Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proc. Natl Acad. Sci. USA 107, 6028–6033 (2010).

    CAS  Google Scholar 

  90. Vernia, S. et al. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway. Gen. Dev. 27, 2345–2355 (2013).

    CAS  Google Scholar 

  91. Vogt, M. C. & Bruning, J. C. CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol. Metab. 24, 76–84 (2013).

    CAS  Google Scholar 

  92. Zhang, X. et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  Google Scholar 

  93. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    CAS  Google Scholar 

  94. Romanatto, T. et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient–effects on leptin and insulin signaling pathways. Peptides 28, 1050–1058 (2007).

    CAS  Google Scholar 

  95. Jais, A. & Bruning, J. C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24–32 (2017).

    Google Scholar 

  96. Quinones, M. et al. p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nat. Commun. 9, 3432 (2018). This work defined, for the first time, the hypothalamic p53–JNK1 axis and its role in the control of energy balance.

    Google Scholar 

  97. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229 (2017).

    CAS  Google Scholar 

  98. Berry, R., Jeffery, E. & Rodeheffer, M. S. Weighing in on adipocyte precursors. Cell Metab. 19, 8–20 (2014).

    CAS  Google Scholar 

  99. Xu, B., Ju, Y. & Song, G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J. Biosci. Bioeng. 117, 624–631 (2014).

    CAS  Google Scholar 

  100. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).

    CAS  Google Scholar 

  101. Engelman, J. A., Lisanti, M. P. & Scherer, P. E. Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J. Biol. Chem. 273, 32111–32120 (1998).

    CAS  Google Scholar 

  102. Engelman, J. A. et al. Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis. J. Biol. Chem. 274, 35630–35638 (1999).

    CAS  Google Scholar 

  103. Aouadi, M. et al. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 55, 281–289 (2006).

    CAS  Google Scholar 

  104. Nguyen, M. T. et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361–35371 (2005).

    CAS  Google Scholar 

  105. Wu, Y. et al. Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat. Med. 21, 373–382 (2015).

    CAS  Google Scholar 

  106. Wu, J. J. et al. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab. 4, 61–73 (2006).

    CAS  Google Scholar 

  107. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    CAS  Google Scholar 

  108. Han, M. S. et al. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl Acad. Sci. USA 117, 2751–2760 (2020).

    CAS  Google Scholar 

  109. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    CAS  Google Scholar 

  110. Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004).

    CAS  Google Scholar 

  111. Zhang, S. et al. Metabolic benefits of inhibition of p38alpha in white adipose tissue in obesity. PLoS Biol. 16, e2004225 (2018).

    Google Scholar 

  112. Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    CAS  Google Scholar 

  113. Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763 (2018). This paper uncovered the NOVA proteins as mediators of the JNK alternative pre-RNA splicing in the control of JNK activity in adipose tissue.

    CAS  Google Scholar 

  114. Vernia, S. et al. An alternative splicing program promotes adipose tissue thermogenesis. eLife 5, e17672 (2016).

    Google Scholar 

  115. Lawan, A. et al. Skeletal muscle-specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates obesity-induced insulin resistance. Diabetes 67, 624–635 (2018).

    CAS  Google Scholar 

  116. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    CAS  Google Scholar 

  117. Henstridge, D. C. et al. Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia 55, 2769–2778 (2012).

    CAS  Google Scholar 

  118. Pal, M. et al. Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice. PLoS One 8, e54247 (2013).

    CAS  Google Scholar 

  119. Aronson, D., Boppart, M. D., Dufresne, S. D., Fielding, R. A. & Goodyear, L. J. Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem. Biophys. Res. Commun. 251, 106–110 (1998).

    CAS  Google Scholar 

  120. Widegren, U. et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J. 12, 1379–1389 (1998).

    CAS  Google Scholar 

  121. Wojtaszewski, J. F. et al. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49, 325–331 (2000).

    CAS  Google Scholar 

  122. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    CAS  Google Scholar 

  123. Pogozelski, A. R. et al. p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 4, e7934 (2009).

    Google Scholar 

  124. Ying, W., Fu, W., Lee, Y. S. & Olefsky, J. M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat. Rev. Endocrinol. 16, 81–90 (2020).

    Google Scholar 

  125. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  Google Scholar 

  126. Sumara, G. et al. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136, 235–248 (2009).

    CAS  Google Scholar 

  127. Lanuza-Masdeu, J. et al. In vivo JNK activation in pancreatic beta-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 62, 2308–2317 (2013).

    CAS  Google Scholar 

  128. Abdelli, S. et al. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation. PLoS One 9, e99796 (2014).

    Google Scholar 

  129. Jaeschke, A. et al. Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Proc. Natl Acad. Sci. USA 102, 6931–6935 (2005).

    CAS  Google Scholar 

  130. Sabio, G. & Davis, R. J. TNF and MAP kinase signalling pathways. Semin. Immunol. 26, 237–245 (2014).

    CAS  Google Scholar 

  131. Gonzalez-Teran, B. et al. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. J. Clin. Invest. 123, 164–178 (2013).

    CAS  Google Scholar 

  132. Han, M. S., Barrett, T., Brehm, M. A. & Davis, R. J. Inflammation mediated by JNK in myeloid cells promotes the development of hepatitis and hepatocellular carcinoma. Cell Rep. 15, 19–26 (2016).

    CAS  Google Scholar 

  133. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol 15, 11–20 (2018).

    Google Scholar 

  134. Cubero, F. J. et al. Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury. Gastroenterology 150, 968–981 (2016).

    CAS  Google Scholar 

  135. Zhao, G. et al. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut 63, 1159–1172 (2014).

    CAS  Google Scholar 

  136. Win, S., Than, T. A., Min, R. W., Aghajan, M. & Kaplowitz, N. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology 63, 1987–2003 (2016).

    CAS  Google Scholar 

  137. Xiong, Y. et al. p38 mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J. Biol. Chem. 282, 4975–4982 (2007).

    CAS  Google Scholar 

  138. Cao, W. et al. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J. Biol. Chem. 280, 42731–42737 (2005).

    CAS  Google Scholar 

  139. Ibrahim, S. H. et al. Mixed lineage kinase 3 deficient mice are protected against the high fat high carbohydrate diet-induced steatohepatitis. Liver Int. 34, 427–437 (2014).

    CAS  Google Scholar 

  140. Xiang, M. et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    CAS  Google Scholar 

  141. Ye, P. et al. Dual-specificity phosphatase 9 protects against nonalcoholic fatty liver disease in mice through ASK1 suppression. Hepatology 69, 76–93 (2019).

    CAS  Google Scholar 

  142. Ye, P. et al. Dual-specificity phosphatase 26 protects against nonalcoholic fatty liver disease in mice through transforming growth factor beta-activated kinase 1 suppression. Hepatology 69, 1946–1964 (2019).

    CAS  Google Scholar 

  143. Huang, Z. et al. Dual specificity phosphatase 12 regulates hepatic lipid metabolism through inhibition of the lipogenesis and apoptosis signal-regulating kinase 1 pathways. Hepatology 70, 1099–1118 (2019).

    CAS  Google Scholar 

  144. Gautheron, J. et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6, 1062–1074 (2014).

    CAS  Google Scholar 

  145. Schuster S, M. M., Johnson, C. D., Zagorska, A., Budas, G. & Hoffman, H. M. et al. Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces liver fibrosis and apoptosis in a NLRP3 mutant model of NASH. J. Hepatol. 66, S608–S609 (2016).

    Google Scholar 

  146. Chen, G. et al. Pirfenidone prevents and reverses hepatic insulin resistance and steatohepatitis by polarizing M2 macrophages. Lab. Invest. 99, 1335–1348 (2019).

    CAS  Google Scholar 

  147. Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016).

    CAS  Google Scholar 

  148. Hui, L., Zatloukal, K., Scheuch, H., Stepniak, E. & Wagner, E. F. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J. Clin. Invest. 118, 3943–3953 (2008).

    CAS  Google Scholar 

  149. Hui, L. et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat. Genet. 39, 741–749 (2007).

    CAS  Google Scholar 

  150. Campbell, J. S., Argast, G. M., Yuen, S. Y., Hayes, B. & Fausto, N. Inactivation of p38 MAPK during liver regeneration. Int. J. Biochem. Cell. Biol. 43, 180–188 (2011).

    CAS  Google Scholar 

  151. Yuan, D. et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell 31, 771–789 (2017).

    CAS  Google Scholar 

  152. Cubero, F. J. et al. Loss of c-Jun N-terminal Kinase 1 and 2 function in liver epithelial cells triggers biliary hyperproliferation resembling cholangiocarcinoma. Hepatol. Commun. 4, 834–851 (2020).

    CAS  Google Scholar 

  153. Manieri, E. et al. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proc. Natl Acad. Sci. USA 117, 16492–16499 (2020).

    CAS  Google Scholar 

  154. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Google Scholar 

  155. Takeishi, Y. et al. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovasc. Res. 53, 131–137 (2002).

    CAS  Google Scholar 

  156. Arabacilar, P. & Marber, M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front. Pharmacol. 6, 102 (2015).

    Google Scholar 

  157. Calamaras, T. D. et al. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Am. J. Physiol. 316, H145–H159 (2019).

    CAS  Google Scholar 

  158. Li, Y. et al. Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation 135, 2041–2057 (2017).

    CAS  Google Scholar 

  159. del Barco Barrantes, I., Coya, J. M., Maina, F., Arthur, J. S. & Nebreda, A. R. Genetic analysis of specific and redundant roles for p38alpha and p38beta MAPKs during mouse development. Proc. Natl Acad. Sci. USA 108, 12764–12769 (2011).

    Google Scholar 

  160. Liao, P. et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc. Natl Acad. Sci. USA 98, 12283–12288 (2001).

    CAS  Google Scholar 

  161. Nishida, K. et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol. Cell. Biol. 24, 10611–10620 (2004).

    CAS  Google Scholar 

  162. Miller, W. P., Ravi, S., Martin, T. D., Kimball, S. R. & Dennis, M. D. Activation of the stress response kinase JNK (c-Jun N-terminal Kinase) attenuates insulin action in retina through a p70S6K1-dependent mechanism. J. Biol. Chem. 292, 1591–1602 (2017).

    CAS  Google Scholar 

  163. Geraldes, P. et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 15, 1298–1306 (2009).

    CAS  Google Scholar 

  164. Liles, J. T. et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J. Clin. Invest. 128, 4485–4500 (2018).

    Google Scholar 

  165. Cicenas, J. et al. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers 10, 1 (2017).

    Google Scholar 

  166. Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA 98, 13681–13686 (2001).

    CAS  Google Scholar 

  167. Coffey, E. T. Nuclear and cytosolic JNK signalling in neurons. Nat. Rev. Neurosci. 15, 285–299 (2014).

    CAS  Google Scholar 

  168. Cohen, P. Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem. J. 425, 53–54 (2009).

    Google Scholar 

  169. Messoussi, A. et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents. Chem. Biol. 21, 1433–1443 (2014).

    CAS  Google Scholar 

  170. Zhang, T. et al. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 19, 140–154 (2012).

    CAS  Google Scholar 

  171. Zheng, J. et al. JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke. J. Cell. Physiol. 235, 2792–2799 (2020).

    CAS  Google Scholar 

  172. Stebbins, J. L. et al. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc. Natl Acad. Sci. USA 105, 16809–16813 (2008).

    CAS  Google Scholar 

  173. Suckfuell, M. et al. Efficacy and safety of AM-111 in the treatment of acute sensorineural hearing loss: a double-blind, randomized, placebo-controlled phase II study. Otol. Neurotol. 35, 1317–1326 (2014).

    Google Scholar 

  174. Jaeschke, A., Czech, M. P. & Davis, R. J. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Gen. Dev. 18, 1976–1980 (2004).

    CAS  Google Scholar 

  175. Haller, V., Nahidino, P., Forster, M. & Laufer, S. A. An updated patent review of p38 MAP kinase inhibitors (2014–2019). Expert. Opin. Ther. Pat. 30, 453–466 (2020).

    CAS  Google Scholar 

  176. Kuma, Y. et al. BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J. Biol. Chem. 280, 19472–19479 (2005).

    CAS  Google Scholar 

  177. Schreiber, S. et al. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 4, 325–334 (2006).

    CAS  Google Scholar 

  178. Moran, N. p38 kinase inhibitor approved for idiopathic pulmonary fibrosis. Nat. Biotechnol. 29, 301 (2011).

    CAS  Google Scholar 

  179. Ogier, J. M., Nayagam, B. A. & Lockhart, P. J. ASK1 inhibition: a therapeutic strategy with multi-system benefits. J. Mol. Med. 98, 335–348 (2020).

    CAS  Google Scholar 

  180. Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69, 1480–1490 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank S. Bartlett for English editing and C. López-Otín for his helpful discussion and valuable comments. I.N. was funded by EFSD/Lilly grants (2017 and 2019), the CNIC IPP FP7 Marie Curie Programme (PCOFUND-2012-600396), an EFSD Rising Star award (2019) and grant MINECO IJC2018-035390-I. M.L. was supported by Spanish grant MINECO-FEDER SAF2015-74112-JIN and Fundación AECC: INVES20026LEIV. G.S. received funding from the following programmes and organizations: European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number ERC 260464; EFSD/Lilly European Diabetes Research Programme; Fundación AECC PROYE19047SABI; BBVA Foundation Leonardo Grants program for Researchers and Cultural Creators (Investigadores-BBVA-2017) IN[17]_BBM_BAS_0066; MINECO-FEDER SAF2016-79126-R and PID2019-104399RB-I00; and the Comunidad de Madrid (IMMUNOTHERCAN-CM S2010/BMD-2326 and B2017/BMD-3733). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505). We thank our collaborators and the students and fellows who contributed to the studies in the Sabio group over the years. We regret that we were unable to include citations to all other relevant studies owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Guadalupe Sabio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Velloso, M. Watt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Toll-like receptors

(TLR). Crucial innate immune system receptors that recognize various pathogen-associated molecular patterns.

Cyclin-dependent kinases

(CDK). A protein kinase family that regulates the cell cycle.

Insulin receptor substrate

(IRS). A family of cytoplasmic adaptor proteins that intermediate insulin signalling pathways.

T helper 2 phenotype

A T cell population involved in the humoral immune response against pathogens such as helminths; their effector cytokines are IL-4, IL-5, IL-10 and IL-13, among others.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolic, I., Leiva, M. & Sabio, G. The role of stress kinases in metabolic disease. Nat Rev Endocrinol 16, 697–716 (2020). https://doi.org/10.1038/s41574-020-00418-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-00418-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing