Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Medulloblastoma

Abstract

Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of MB.
Fig. 2: MB predisposition.
Fig. 3: Histone-modifying genes and epigenetic alterations in MB.
Fig. 4: WNT subgroup.
Fig. 5: SHH subgroup.
Fig. 6: Group 3.
Fig. 7: Group 4.
Fig. 8: MRI of MB.
Fig. 9: Histopathology.
Fig. 10: Current molecular risk-adapted management algorithm.

Similar content being viewed by others

References

  1. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002). This study is the first to demonstrate that MB is molecularly distinct from other embryonal brain tumour entities such as AT/RT and PNET.

    Article  CAS  PubMed  Google Scholar 

  2. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    Article  PubMed  Google Scholar 

  3. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLOS ONE 3, e3088 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    Article  PubMed  Google Scholar 

  6. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  7. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012). This consensus paper proposes the recognition of four distinct MB subgroups, changing the way MB is studied in the research setting and treated clinically.

    Article  CAS  PubMed  Google Scholar 

  8. Louis, D. N. et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  9. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  PubMed  Google Scholar 

  10. Oyharcabal-Bourden, V. et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. J. Clin. Oncol. 23, 4726–4734 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Packer, R. J. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24, 4202–4208 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gandola, L. et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 27, 566–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Jakacki, R. I. et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 30, 2648–2653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20, iv1–iv86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaatsch, P., Grabow, D. & Spix, C. German Childhood Cancer Registry — Annual Report 2016. Kinderkrebsregister http://www.kinderkrebsregister.de/dkkr-gb/latest-publications/annual-reports/annual-report-2016.html (2016).

  16. Giordana, M. T., Schiffer, P., Lanotte, M., Girardi, P. & Chio, A. Epidemiology of adult medulloblastoma. Int. J. Cancer 80, 689–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Khanna, V. et al. Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J. Neurooncol. 135, 433–441 (2017).

    Article  PubMed  Google Scholar 

  18. Johnston, D. L. et al. Incidence of medulloblastoma in Canadian children. J. Neurooncol. 120, 575–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Waszak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018). This study describes germline predisposition to MB according to molecular subgroup in a series of >1,000 patients with MB, estimating that 6% of all MB diagnoses are attributable to heritable pathogenetic variants in six genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ezzat, S. et al. Pediatric brain tumors in a low/middle income country: does it differ from that in developed world? J. Neurooncol. 126, 371–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Makino, K., Nakamura, H., Yano, S. & Kuratsu, J. & Kumamoto Brain Tumor Group. Population-based epidemiological study of primary intracranial tumors in childhood. Childs Nerv. Syst. 26, 1029–1034 (2010).

    Article  PubMed  Google Scholar 

  22. Brugieres, L. et al. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J. Clin. Oncol. 30, 2087–2093 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, M. J. et al. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J. Clin. Oncol. 32, 4155–4161 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Twigg, S. R. F. et al. A recurrent mosaic mutation in SMO, encoding the hedgehog signal transducer Smoothened, is the major cause of Curry-Jones syndrome. Am. J. Hum. Genet. 98, 1256–1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tommerup, N. & Nielsen, F. A familial reciprocal translocation t(3;7) (p21.1;p13) associated with the Greig polysyndactyly-craniofacial anomalies syndrome. Am. J. Med. Genet. 16, 313–321 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Erez, A. et al. GLI3 is not mutated commonly in sporadic medulloblastomas. Cancer 95, 28–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, S. B. Familial polyposis coli and its extracolonic manifestations. J. Med. Genet. 19, 193–203 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 13, 1237–1240 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Petrella, R., Hirschhorn, K. & German, J. Triple autosomal trisomy in a pregnancy at risk for Bloom’s syndrome. Am. J. Med. Genet. 40, 316–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Taeubner, J. et al. Diagnostic challenges in a child with early onset desmoplastic medulloblastoma and homozygous variants in MSH2 and MSH6. Eur. J. Hum. Genet. 26, 440–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Chadarevian, J. P., Vekemans, M. & Bernstein, M. Fanconi’s anemia, medulloblastoma, Wilms’ tumor, horseshoe kidney, and gonadal dysgenesis. Arch. Pathol. Lab. Med. 109, 367–369 (1985).

    PubMed  Google Scholar 

  33. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. Cancer Cell 25, 393–405 (2014). This report establishes the concept of a genotype–phenotype correlation within SHH-MB regarding age and response to smoothened inhibition in a large cohort of patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Distel, L., Neubauer, S., Varon, R., Holter, W. & Grabenbauer, G. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med. Pediatr. Oncol. 41, 44–48 (2003).

    Article  PubMed  Google Scholar 

  35. Bianchi, C., Giammusso, V., Berti, N. & Vassallo, A. Medulloblastoma in a patient with xeroderma pigmentosum [Italian]. Pathologica 71, 697–701 (1979).

    CAS  PubMed  Google Scholar 

  36. Evans, G., Burnell, L., Campbell, R., Gattamaneni, H. R. & Birch, J. Congenital anomalies and genetic syndromes in 173 cases of medulloblastoma. Med. Pediatr. Oncol. 21, 433–434 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41, 465–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011). This study is the first exome-level sequencing study of MB, identifying novel recurrent mutations targeting chromatin-modifying genes.

    Article  CAS  PubMed  Google Scholar 

  39. Batora, N. V. et al. Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience 264, 171–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, D. T., Northcott, P. A., Kool, M. & Pfister, S. M. The role of chromatin remodeling in medulloblastoma. Brain Pathol. 23, 193–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Northcott, P. A. et al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017). This report summarizes the genomic landscape of MB across nearly 500 patient tumours according to molecular subgroups and associated subtypes, representing a definitive summary of the prevalence and subgroup distribution of recurrently altered genes and pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clifford, S. C. et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666–2670 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010). This report molecularly and experimentally establishes that WNT-MBs and SHH-MBs arise from distinct progenitor populations in the developing hindbrain, provoking the notion that MB subgroups are defined by their disparate developmental origins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh, S. et al. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 7, 28169–28182 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Helming, K. C., Wang, X. & Roberts, C. W. M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 26, 309–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dominguez, I., Sonenshein, G. E. & Seldin, D. C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell. Mol. Life Sci. 66, 1850–1857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duncan, J. S. & Litchfield, D. W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Saha, N., Robev, D., Mason, E., Himanen, J. P. & Nikolov, D. B. Therapeutic potential of targeting the Eph/ephrin signaling complex. Int. J. Biochem. Cell Biol. 105, 123–133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016). This publication establishes a potential biological explanation for the favourable treatment response of patients with WNT-MB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Northcott, P. A., Rutka, J. T. & Taylor, M. D. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg. Focus 28, E6 (2010).

    Article  PubMed  Google Scholar 

  58. Remke, M. et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lindsey, J. C. et al. TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol. 127, 307–309 (2014).

    Article  PubMed  Google Scholar 

  60. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schwalbe, E. C. et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 18, 958–971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robinson, G. W. et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 19, 768–784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This first whole-genome sequencing study of MB identifies catastrophic genomic rearrangements, known as chromothripsis, in patients harbouring germline TP53 mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lindsey, J. C. et al. TP53 mutations in favorable-risk Wnt/Wingless-subtype medulloblastomas. J. Clin. Oncol. 29, e344–e346; author reply e347–e348 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Pfaff, E. et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J. Clin. Oncol. 28, 5188–5196 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Zhukova, N. et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 31, 2927–2935 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ramaswamy, V. et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 131, 821–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Petrirena, G. J. et al. Recurrent extraneural sonic hedgehog medulloblastoma exhibiting sustained response to vismodegib and temozolomide monotherapies and inter-metastatic molecular heterogeneity at progression. Oncotarget 9, 10175–10183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lou, E. et al. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib. Cancer Biol. Ther. 12, 1–7 (2016).

    Google Scholar 

  71. Robinson, G. W. et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33, 2646–2654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gajjar, A. et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin. Cancer Res. 19, 6305–6312 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robinson, G. W. et al. Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget 8, 69295–69302 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Forget, A. et al. Aberrant ERBB4-SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell 34, 379–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Satow, R., Kurisaki, A., Chan, T. C., Hamazaki, T. S. & Asashima, M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 11, 763–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Tanaka, S. S. et al. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLOS ONE 8, e57428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beby, F. & Lamonerie, T. The homeobox gene Otx2 in development and disease. Exp. Eye Res. 111, 9–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Simeone, A. Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J. 17, 6790–6798 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boulay, G. et al. OTX2 activity at distal regulatory elements shapes the chromatin landscape of group 3 medulloblastoma. Cancer Discov. 7, 288–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Garancher, A. et al. NRL and CRX define photoreceptor identity and reveal subgroup-specific dependencies in medulloblastoma. Cancer Cell 33, 435–449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bunt, J. et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer 131, E21–E32 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Bunt, J. et al. OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels. Acta Neuropathol. 125, 385–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Bai, R. Y., Staedtke, V., Lidov, H. G., Eberhart, C. G. & Riggins, G. J. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res. 72, 5988–6001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, Y. et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J. Mol. Cell. Cardiol. 44, 47–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Davis, C. A. et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol. Cell. Biol. 26, 2626–2636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tigan, A. S., Bellutti, F., Kollmann, K., Tebb, G. & Sexl, V. CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 35, 3083–3091 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6, 353–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Cook Sangar, M. L. et al. Inhibition of CDK4/6 by palbociclib significantly extends survival in medulloblastoma patient-derived xenograft mouse models. Clin. Cancer Res. 23, 5802–5813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hanaford, A. R. et al. DiSCoVERing innovative therapies for rare tumors: combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clin. Cancer Res. 22, 3903–3914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Faria, C. C. et al. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget 6, 21718–21729 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shih, D. J. et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Griesinger, A. M. et al. Characterization of distinct immunophenotypes across pediatric brain tumor types. J. Immunol. 191, 4880–4888 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, C. et al. M1 macrophage recruitment correlates with worse outcome in SHH medulloblastomas. BMC Cancer 18, 535 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Martin, A. M. et al. PD-L1 expression in medulloblastoma: an evaluation by subgroup. Oncotarget 9, 19177–19191 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Margol, A. S. et al. Tumor-associated macrophages in SHH subgroup of medulloblastomas. Clin. Cancer Res. 21, 1457–1465 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bockmayr, M. et al. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology 7, e1462430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wilne, S. et al. Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol. 8, 685–695 (2007).

    Article  PubMed  Google Scholar 

  101. Chang, C. H., Housepian, E. M. & Herbert, C. Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology 93, 1351–1359 (1969).

    Article  CAS  PubMed  Google Scholar 

  102. Garzia, L. et al. A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 173, 1549 (2018). This report uses a combination of human and mouse studies to substantiate the presence of circulating tumour cells in the blood of patients with MB that can spread to the leptomeningeal space to form leptomeningeal metastases.

    Article  CAS  PubMed  Google Scholar 

  103. Ellison, D. W. Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol. 120, 305–316 (2010).

    Article  PubMed  Google Scholar 

  104. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hovestadt, V. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125, 913–916 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schwalbe, E. C. et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 125, 359–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwalbe, E. C. et al. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures. Sci. Rep. 7, 13421 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Korshunov, A. et al. DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathol. 134, 965–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goschzik, T. et al. Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol. Appl. Neurobiol. 41, 135–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Pietsch, T. et al. Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol. 128, 137–149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chiang, J. C. & Ellison, D. W. Molecular pathology of paediatric central nervous system tumours. J. Pathol. 241, 159–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Pfister, S. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117, 457–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Korshunov, A. et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 120, 253–260 (2010).

    Article  PubMed  Google Scholar 

  115. Korshunov, A. et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 124, 875–881 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Spence, T. et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol. 128, 291–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Panwalkar, P. et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 134, 705–714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kratz, C. P. et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Foulkes, W. D. et al. Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin. Cancer Res. 23, e62–e67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. von Bueren, A. O. et al. Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J. Clin. Oncol. 34, 4151–4160 (2016).

    Article  Google Scholar 

  122. Lannering, B. et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 30, 3187–3193 (2012).

    Article  PubMed  Google Scholar 

  123. Albright, A. L. et al. Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 38, 265–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Thompson, E. M. et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol. 17, 484–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gajjar, A. et al. Medulloblastoma with brain stem involvement: the impact of gross total resection on outcome. Pediatr. Neurosurg. 25, 182–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Thompson, E. M., Bramall, A., Herndon, J. E. 2nd, Taylor, M. D. & Ramaswamy, V. The clinical importance of medulloblastoma extent of resection: a systematic review. J. Neurooncol. 139, 523–539 (2018).

    Article  PubMed  Google Scholar 

  127. Schreiber, J. E. et al. Posterior fossa syndrome and long-term neuropsychological outcomes among children treated for medulloblastoma on a multi-institutional, prospective study. Neuro Oncol. 19, 1673–1682 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rutkowski, S. et al. Biological material collection to advance translational research and treatment of children with CNS tumours: position paper from the SIOPE Brain Tumour Group. Lancet Oncol. 19, e419–e428 (2018).

    Article  PubMed  Google Scholar 

  129. Mack, S. C. & Northcott, P. A. Genomic analysis of childhood brain tumors: methods for genome-wide discovery and precision medicine become mainstream. J. Clin. Oncol. 35, 2346–2354 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Bloom, H. J. Medulloblastoma in children: increasing survival rates and further prospects. Int. J. Radiat. Oncol. Biol. Phys. 8, 2023–2027 (1982).

    Article  CAS  PubMed  Google Scholar 

  131. Ashley, D. M. et al. Induction chemotherapy and conformal radiation therapy for very young children with nonmetastatic medulloblastoma: Children’s Oncology Group study P9934. J. Clin. Oncol. 30, 3181–3186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Deutsch, M. et al. Results of a prospective randomized trial comparing standard dose neuraxis irradiation (3,600 cGy/20) with reduced neuraxis irradiation (2,340 cGy/13) in patients with low-stage medulloblastoma. A Combined Children’s Cancer Group-Pediatric Oncology Group Study. Pediatr. Neurosurg. 24, 167–176; discussion 176–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. St Clair, W. H. et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 58, 727–734 (2004).

    Article  Google Scholar 

  134. Merchant, T. E. et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 70, 782–787 (2008).

    Article  PubMed  Google Scholar 

  135. Moxon-Emre, I. et al. Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J. Clin. Oncol. 32, 1760–1768 (2014).

    Article  PubMed  Google Scholar 

  136. Vatner, R. E. et al. Endocrine deficiency as a function of radiation dose to the hypothalamus and pituitary in pediatric and young adult patients with brain tumors. J. Clin. Oncol. 36, 2854–2862 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pulsifer, M. B. et al. Cognitive and adaptive outcomes after proton radiation for pediatric patients with brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 102, 391–398 (2018).

    Article  PubMed  Google Scholar 

  138. Yock, T. I. et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol. 17, 287–298 (2016).

    Article  PubMed  Google Scholar 

  139. Giantsoudi, D. et al. Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. Int. J. Radiat. Oncol. Biol. Phys. 95, 287–296 (2016).

    Article  PubMed  Google Scholar 

  140. Sabin, N. D. et al. Imaging changes in very young children with brain tumors treated with proton therapy and chemotherapy. AJNR Am. J. Neuroradiol. 34, 446–450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gentile, M. S. et al. Brainstem injury in pediatric patients with posterior fossa tumors treated with proton beam therapy and associated dosimetric factors. Int. J. Radiat. Oncol. Biol. Phys. 100, 719–729 (2018).

    Article  PubMed  Google Scholar 

  142. Evans, A. E. et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg. 72, 572–582 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Kortmann, R. D. et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int. J. Radiat. Oncol. Biol. Phys. 46, 269–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Taylor, R. E. et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol. 21, 1581–1591 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Rieken, S. et al. Outcome and prognostic factors of radiation therapy for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 81, e7–e13 (2011).

    Article  PubMed  Google Scholar 

  146. von Bueren, A. O. et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro Oncol. 13, 669–679 (2011).

    Article  Google Scholar 

  147. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Dhall, G. et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer 50, 1169–1175 (2008).

    Article  PubMed  Google Scholar 

  149. Lafay-Cousin, L. et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr. Blood Cancer 63, 1527–1534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rutkowski, S. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28, 4961–4968 (2010).

    Article  PubMed  Google Scholar 

  151. Atalar, B. et al. Treatment outcome and prognostic factors for adult patients with medulloblastoma: the Rare Cancer Network (RCN) experience. Radiother. Oncol. 127, 96–102 (2018).

    Article  PubMed  Google Scholar 

  152. Kann, B. H. et al. Adjuvant chemotherapy and overall survival in adult medulloblastoma. Neuro Oncol. 19, 259–269 (2017).

    CAS  PubMed  Google Scholar 

  153. Beier, D. et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro Oncol. 20, 400–410 (2018).

    Article  PubMed  Google Scholar 

  154. Friedrich, C. et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: a prospective observational multicentre study. Eur. J. Cancer 49, 893–903 (2013).

    Article  PubMed  Google Scholar 

  155. Sabel, M. et al. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J. Neurooncol. 129, 515–524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Johnston, D. L. et al. Survival following tumor recurrence in children with medulloblastoma. J. Pediatr. Hematol. Oncol. 40, e159–e163 (2018).

    Article  PubMed  Google Scholar 

  157. Morrissy, A. S. et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hill, R. M. et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27, 72–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McManamy, C. S. et al. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol. 62, 627–632 (2003).

    Article  PubMed  Google Scholar 

  160. Eberhart, C. G. & Burger, P. C. Anaplasia and grading in medulloblastomas. Brain Pathol. 13, 376–385 (2003).

    Article  PubMed  Google Scholar 

  161. McManamy, C. S. et al. Nodule formation and desmoplasia in medulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol. 17, 151–164 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ellison, D. W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

    Article  PubMed  Google Scholar 

  163. Morfouace, M. et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25, 516–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Michalski, J. M. et al. Results of COG ACNS0331: a phase III trial of involved-field radiotherapy (IFRT) and low dose craniospinal irradiation (LD-CSI) with chemotherapy in average-risk medulloblastoma: a report from the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 96, 937–938 (2016).

    Article  Google Scholar 

  165. Veneroni, L. et al. Quality of life in long-term survivors treated for metastatic medulloblastoma with a hyperfractionated accelerated radiotherapy (HART) strategy. Childs Nerv. Syst. 33, 1969–1976 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Yoo, H. J. et al. Neurocognitive function and health-related quality of life in pediatric Korean survivors of medulloblastoma. J. Korean Med. Sci. 31, 1726–1734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. King, A. A. et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: a report from the Childhood Cancer Survivor Study. Neuro Oncol. 19, 689–698 (2017).

    PubMed  Google Scholar 

  168. Kieffer, V. et al. Intellectual, educational, and situation-based social outcome in adult survivors of childhood medulloblastoma. Dev. Neruorehabil. 22, 19–26 (2018).

    Article  Google Scholar 

  169. Ris, M. D., Packer, R., Goldwein, J., Jones-Wallace, D. & Boyett, J. M. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children’s Cancer Group study. J. Clin. Oncol. 19, 3470–3476 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Spiegler, B. J., Bouffet, E., Greenberg, M. L., Rutka, J. T. & Mabbott, D. J. Change in neurocognitive functioning after treatment with cranial radiation in childhood. J. Clin. Oncol. 22, 706–713 (2004).

    Article  PubMed  Google Scholar 

  171. Riggs, L. et al. Changes to memory structures in children treated for posterior fossa tumors. J. Int. Neuropsychol. Soc. 20, 168–180 (2014).

    Article  PubMed  Google Scholar 

  172. Scantlebury, N. et al. White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor. Neuropsychology 30, 425–438 (2016).

    Article  PubMed  Google Scholar 

  173. Glass, J. O. et al. Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro Oncol. 19, 1408–1418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Law, N. et al. Executive function in paediatric medulloblastoma: the role of cerebrocerebellar connections. J. Neuropsychol. 11, 174–200 (2017).

    Article  PubMed  Google Scholar 

  175. Palmer, S. L. et al. Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. J. Clin. Oncol. 31, 3494–3500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gudrunardottir, T. et al. Consensus paper on post-operative pediatric cerebellar mutism syndrome: the Iceland Delphi results. Childs Nerv. Syst. 32, 1195–1203 (2016).

    Article  PubMed  Google Scholar 

  177. Law, N. et al. Clinical and neuroanatomical predictors of cerebellar mutism syndrome. Neuro Oncol. 14, 1294–1303 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Liu, J. F. et al. Development of a pre-operative scoring system for predicting risk of post-operative paediatric cerebellar mutism syndrome. Br. J. Neurosurg. 32, 18–27 (2018).

    Article  PubMed  Google Scholar 

  179. Moxon-Emre, I. et al. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J. Neurosurg. Pediatr. 18, 29–40 (2016).

    Article  PubMed  Google Scholar 

  180. Decker, A. L. et al. Smaller hippocampal subfield volumes predict verbal associative memory in pediatric brain tumor survivors. Hippocampus 27, 1140–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Wong, C. S. & Van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 4, 273–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Panagiotakos, G. et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLOS ONE 2, e588 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Monje, M. L. et al. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann. Neurol. 62, 515–520 (2007).

    Article  PubMed  Google Scholar 

  184. Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Khong, P. L. et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J. Clin. Oncol. 24, 884–890 (2006).

    Article  PubMed  Google Scholar 

  186. Nieman, B. J. et al. White and gray matter abnormalities after cranial radiation in children and mice. Int. J. Radiat. Oncol. Biol. Phys. 93, 882–891 (2015).

    Article  PubMed  Google Scholar 

  187. Grill, J. et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int. J. Radiat. Oncol. Biol. Phys. 45, 137–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Mulhern, R. K. et al. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: a Pediatric Oncology Group study. J. Clin. Oncol. 16, 1723–1728 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Barahmani, N. et al. Glutathione S-transferase M1 and T1 polymorphisms may predict adverse effects after therapy in children with medulloblastoma. Neuro Oncol. 11, 292–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brackett, J. et al. Antioxidant enzyme polymorphisms and neuropsychological outcomes in medulloblastoma survivors: a report from the Childhood Cancer Survivor Study. Neuro Oncol. 14, 1018–1025 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kennedy, C. et al. Quality of survival and growth in children and young adults in the PNET4 European controlled trial of hyperfractionated versus conventional radiation therapy for standard-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 88, 292–300 (2014).

    Article  PubMed  Google Scholar 

  192. Camara-Costa, H. et al. Neuropsychological outcome of children treated for standard risk medulloblastoma in the PNET4 european randomized controlled trial of hyperfractionated versus standard radiation therapy and maintenance chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 978–985 (2015).

    Article  PubMed  Google Scholar 

  193. Kahalley, L. S. et al. Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J. Clin. Oncol. 34, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zureick, A. H. et al. Left hippocampal dosimetry correlates with visual and verbal memory outcomes in survivors of pediatric brain tumors. Cancer 124, 2238–2245 (2018).

    Article  PubMed  Google Scholar 

  195. Antonini, T. N. et al. Attention, processing speed, and executive functioning in pediatric brain tumor survivors treated with proton beam radiation therapy. Radiother. Oncol. 124, 89–97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol. 11, 201–210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bull, K. S., Kennedy, C. R., Bailey, S., Ellison, D. W. & Clifford, S. C. Improved health-related quality of life outcomes associated with SHH subgroup medulloblastoma in SIOP-UKCCSG PNET3 trial survivors. Acta Neuropathol. 128, 151–153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Moxon-Emre, I. et al. Intellectual outcome in molecular subgroups of medulloblastoma. J. Clin. Oncol. 34, 4161–4170 (2016).

    Article  PubMed  Google Scholar 

  199. Conklin, H. M. et al. Computerized cognitive training for amelioration of cognitive late effects among childhood cancer survivors: a randomized controlled trial. J. Clin. Oncol. 33, 3894–3902 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Riggs, L. et al. Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro Oncol. 19, 440–450 (2017).

    PubMed  Google Scholar 

  201. Phi, J. H. et al. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol. 135, 939–953 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Pei, Y. et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29, 311–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Prince, E. W. et al. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget 7, 53881–53894 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Matheson, C. J., Casalvieri, K. A., Backos, D. S. & Reigan, P. Development of potent pyrazolopyrimidinone-based WEE1 inhibitors with limited single-agent cytotoxicity for cancer therapy. ChemMedChem 13, 1681–1694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Harris, P. S. et al. Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol. Cancer 13, 72 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Lee, C. et al. Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nat. Commun. 10, 332 (2019).

  207. Orlando, D. et al. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma. Cancer Res. 78, 3337–3349 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Nellan, A. et al. Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J. Immunother. Cancer 6, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ellison, D. W. et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005). This report is the first to indicate an excellent prognosis for patients with MB with somatic CTNNB1 mutations, which would subsequently be recognized as the favourable-outcome WNT subgroup.

    Article  CAS  PubMed  Google Scholar 

  210. Fattet, S. et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J. Pathol. 218, 86–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Clifford, S. C. et al. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 6, 38827–38839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Markant, S. L. & Wechsler-Reya, R. J. Review: personalized mice: modelling the molecular heterogeneity of medulloblastoma. Neuropathol. Appl. Neurobiol. 38, 228–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Lau, J. et al. Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv. Syst. 28, 521–532 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Wu, X., Northcott, P. A., Croul, S. & Taylor, M. D. Mouse models of medulloblastoma. Chin. J. Cancer 30, 442–449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse Patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  216. Wetmore, C., Eberhart, D. E. & Curran, T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for Patched. Cancer Res. 61, 513–516 (2001).

    CAS  PubMed  Google Scholar 

  217. Hatton, B. A. et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 68, 1768–1776 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Dey, J. et al. A distinct Smoothened mutation causes severe cerebellar developmental defects and medulloblastoma in a novel transgenic mouse model. Mol. Cell. Biol. 32, 4104–4115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Swartling, F. J. et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24, 1059–1072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lee, Y. et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26, 6442–6447 (2007).

    Article  CAS  PubMed  Google Scholar 

  222. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Oliver, T. G. et al. Loss of Patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. Kim, J. Y. et al. Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in Patched heterozygous mice. Dev. Biol. 263, 50–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Vanner, R. J. et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 26, 33–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Kawauchi, D. et al. Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene 36, 5231–5242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Poschl, J. et al. Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathol. 128, 123–136 (2014).

    Article  PubMed  CAS  Google Scholar 

  231. Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Eberhart, C. G. et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94, 552–560 (2002).

    Article  PubMed  Google Scholar 

  233. Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340–351 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks C. Dufour, E. Ferretti, L. Gandola, T. MacDonald, I. Slavc, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.A.N. and S.M.P.); Epidemiology (D.M. and C.P.K.); Mechanisms/pathophysiology (P.A.N., S.L.P., M.D.T., S.C.C. and S.M.P.); Diagnosis, screening and prevention (D.W.E., S.C.C., M.D.T. and S.M.P.); Management (G.W.R., S.R., M.D.T. and A.G.); Quality of life (D.J.M., G.W.R., S.R. and A.G.); Outlook (S.M.P. and P.A.N.); Overview of Primer (S.M.P.).

Corresponding author

Correspondence to Stefan M. Pfister.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northcott, P.A., Robinson, G.W., Kratz, C.P. et al. Medulloblastoma. Nat Rev Dis Primers 5, 11 (2019). https://doi.org/10.1038/s41572-019-0063-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0063-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer