Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New treatment strategies for advanced-stage gastrointestinal stromal tumours

Abstract

When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.

Key points

  • All currently approved systemic therapies for GIST are tyrosine kinase inhibitors (TKIs); these agents can be used to treat the majority of patients with advanced-stage GIST.

  • TKIs have limitations, particularly in the setting of advanced-stage disease, because of secondary intra-allelic mutations that confer drug resistance, but also because of the need for indefinite treatment to control quiescent, drug-persistent tumour cells.

  • Understanding the underlying biology of the different molecular subtypes of GIST has presented new therapeutic approaches beyond TKIs.

  • TKIs remain relevant for GISTs harbouring receptor tyrosine kinase mutations or fusions, but applying them in new, more strategic ways will benefit patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of GIST molecular subtypes.
Fig. 2: GIST signalling pathways, drug targets and current systemic therapies.
Fig. 3: Typical pattern of GIST response and evolution during TKI treatment.
Fig. 4: New therapeutic approaches exploiting different elements of GIST biology.

Similar content being viewed by others

References

  1. Blay, J. Y., Kang, Y. K., Nishida, T. & von Mehren, M. Gastrointestinal stromal tumours. Nat. Rev. Dis. Prim. 7, 22 (2021).

    PubMed  Google Scholar 

  2. Soreide, K. et al. Global epidemiology of gastrointestinal stromal tumours (GIST): a systematic review of population-based cohort studies. Cancer Epidemiol. 40, 39–46 (2016).

    PubMed  Google Scholar 

  3. Corless, C. L., Barnett, C. M. & Heinrich, M. C. Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer 11, 865–878 (2011).

    CAS  PubMed  Google Scholar 

  4. Bannon, A. E., Klug, L. R., Corless, C. L. & Heinrich, M. C. Using molecular diagnostic testing to personalize the treatment of patients with gastrointestinal stromal tumors. Expert Rev. Mol. Diagn. 17, 445–457 (2017).

    CAS  PubMed  Google Scholar 

  5. Corless, C. L. et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J. Clin. Oncol. 23, 5357–5364 (2005).

    CAS  PubMed  Google Scholar 

  6. Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710 (2003). First description of PDGFRA mutations in GIST.

    CAS  PubMed  Google Scholar 

  7. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998). Seminal paper with the first description of KIT mutations in GIST.

    CAS  PubMed  Google Scholar 

  8. Shi, E. et al. FGFR1 and NTRK3 actionable alterations in “wild-type” gastrointestinal stromal tumors. J. Transl. Med. 14, 339 (2016). Comprehensive molecular characterization of the mutational landscape of GIST using next-generation sequencing; this paper details FGFR1 and NTRK3 translocations in GIST, and provides one of the first descriptions of the responsiveness of NTRK3-rearranged GIST to larotrectinib.

    PubMed  PubMed Central  Google Scholar 

  9. Serrano, C. & George, S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin. Cancer Res. 26, 5078–5085 (2020).

    CAS  PubMed  Google Scholar 

  10. Cassier, P. A. & Blay, J. Y. Molecular response prediction in gastrointestinal stromal tumors. Target. Oncol. 5, 29–37 (2010).

    PubMed  Google Scholar 

  11. Huss, S. et al. A subset of gastrointestinal stromal tumors previously regarded as wild-type tumors carries somatic activating mutations in KIT exon 8 (p.D419del). Mod. Pathol. 26, 1004–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Verschoor, A. J. et al. The incidence, mutational status, risk classification and referral pattern of gastro-intestinal stromal tumours in The Netherlands: a nationwide pathology registry (PALGA) study. Virchows Arch. 472, 221–229 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Boikos, S. A. et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health gastrointestinal stromal tumor clinic. JAMA Oncol. 2, 922–928 (2016). Comprehensive clinical and molecular characterization of GISTs lacking KIT or PDGFRA mutations. This paper provides a detailed characterization of the molecular mechanisms underlying SDH deficiency in GIST and of the clinical responses of SDH-deficient GISTs to conventional TKIs.

    PubMed  PubMed Central  Google Scholar 

  14. Taniguchi, M. et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res. 59, 4297–4300 (1999).

    CAS  PubMed  Google Scholar 

  15. Klug, L. R., Kent, J. D. & Heinrich, M. C. Structural and clinical consequences of activation loop mutations in class III receptor tyrosine kinases. Pharmacol. Ther. 191, 123–134 (2018).

    CAS  PubMed  Google Scholar 

  16. Nannini, M. et al. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer 14, 685 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Vanden Bempt, I. et al. Comprehensive targeted next-generation sequencing approach in the molecular diagnosis of gastrointestinal stromal tumor. Genes Chromosomes Cancer 60, 239–249 (2020).

    PubMed  Google Scholar 

  18. Sharma, A. K. et al. Location of gastrointestinal stromal tumor (GIST) in the stomach predicts tumor mutation profile and drug sensitivity. Clin. Cancer Res. 27, 5334–5342 (2021). This paper comprehensively maps mutational status and primary tumour location of gastric GISTs to provide novel insights on pathogenesis, and suggests differential sensitivity of different ICC subtypes to neoplastic transformation by various mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, H. C. et al. KIT exon 11 codons 557–558 deletion mutation promotes liver metastasis through the CXCL12/CXCR4 axis in gastrointestinal stromal tumors. Clin. Cancer Res. 22, 3477–3487 (2016).

    CAS  PubMed  Google Scholar 

  20. Dematteo, R. P. et al. Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer 112, 608–615 (2008).

    PubMed  Google Scholar 

  21. Kunstlinger, H. et al. Gastrointestinal stromal tumors with KIT exon 9 mutations: update on genotype–phenotype correlation and validation of a high-resolution melting assay for mutational testing. Am. J. Surg. Pathol. 37, 1648–1659 (2013).

    PubMed  Google Scholar 

  22. Lasota, J. et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod. Pathol. 21, 476–484 (2008).

    CAS  PubMed  Google Scholar 

  23. Klug, L. R., Corless, C. L. & Heinrich, M. C. Inhibition of KIT tyrosine kinase activity: two decades after the first approval. J. Clin. Oncol. 39, 1674–1686 (2021).

    CAS  PubMed  Google Scholar 

  24. Cassier, P. A. et al. Outcome of patients with platelet-derived growth factor receptor α-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin. Cancer Res. 18, 4458–4464 (2012).

    CAS  PubMed  Google Scholar 

  25. von Mehren, M. et al. Clinical efficacy comparison of avapritinib with other tyrosine kinase inhibitors in gastrointestinal stromal tumors with PDGFRA D842V mutation: a retrospective analysis of clinical trial and real-world data. BMC Cancer 21, 291 (2021). Real-world comparison of outcomes of patients with PDGFRAD842V-mutant GIST treated with conventional TKIs versus avapritinib.

    Google Scholar 

  26. Yoo, C. et al. Efficacy of imatinib in patients with platelet-derived growth factor receptor α-mutated gastrointestinal stromal tumors. Cancer Res. Treat. 48, 546–552 (2016).

    CAS  PubMed  Google Scholar 

  27. Lasota, J. & Miettinen, M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 53, 245–266 (2008).

    CAS  PubMed  Google Scholar 

  28. Miettinen, M. et al. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am. J. Surg. Pathol. 35, 1712–1721 (2011). Detailed clinicopathological characterization of SDH-deficient GIST.

    PubMed  PubMed Central  Google Scholar 

  29. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011). One of the first descriptions of SDH-deficient GIST.

    CAS  PubMed  Google Scholar 

  30. Doyle, L. A., Nelson, D., Heinrich, M. C., Corless, C. L. & Hornick, J. L. Loss of succinate dehydrogenase subunit B (SDHB) expression is limited to a distinctive subset of gastric wild-type gastrointestinal stromal tumours: a comprehensive genotype–phenotype correlation study. Histopathology 61, 801–809 (2012).

    PubMed  Google Scholar 

  31. Pantaleo, M. A. et al. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J. Natl Cancer Inst. 103, 983–987 (2011).

    CAS  PubMed  Google Scholar 

  32. Pantaleo, M. A. et al. SDHA germline variants in adult patients with SDHA-mutant gastrointestinal stromal tumor. Front. Oncol. 11, 778461 (2021).

    PubMed  Google Scholar 

  33. Evenepoel, L. et al. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations. Genet. Med. 17, 610–620 (2015).

    CAS  PubMed  Google Scholar 

  34. Gill, A. J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 72, 106–116 (2018).

    PubMed  Google Scholar 

  35. Gaal, J. et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney–Stratakis and Carney triad gastrointestinal stromal tumors. Mod. Pathol. 24, 147–151 (2011).

    CAS  PubMed  Google Scholar 

  36. Pantaleo, M. A. et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur. J. Hum. Genet. 22, 32–39 (2014).

    CAS  PubMed  Google Scholar 

  37. Killian, J. K. et al. Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci. Transl. Med. 6, 268ra177 (2014). First description of SDHC promoter hypermethylation as a mechanism causing SDH deficiency in GIST.

    PubMed  PubMed Central  Google Scholar 

  38. Casey, R. T. et al. SDHC epi-mutation testing in gastrointestinal stromal tumours and related tumours in clinical practice. Sci. Rep. 9, 10244 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Miettinen, M. & Lasota, J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin. Diagn. Pathol. 23, 70–83 (2006).

    PubMed  Google Scholar 

  40. Agaimy, A. et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J. Clin. Pathol. 62, 613–616 (2009).

    CAS  PubMed  Google Scholar 

  41. Hostein, I. et al. BRAF mutation status in gastrointestinal stromal tumors. Am. J. Clin. Pathol. 133, 141–148 (2010).

    CAS  PubMed  Google Scholar 

  42. Salvi, P. F. et al. Gastrointestinal stromal tumors associated with neurofibromatosis 1: a single centre experience and systematic review of the literature including 252 cases. Int. J. Surg. Oncol. 2013, 398570 (2013). Comprehensive clinicopathological characterization of GIST in patients with classical neurofibromatosis type I.

    PubMed  PubMed Central  Google Scholar 

  43. Falchook, G. S. et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 4, 310–315 (2013). First description of successful treatment of BRAF-mutant GIST using a BRAF kinase inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanda, E. T. et al. Current state of target treatment in BRAF mutated melanoma. Front. Mol. Biosci. 7, 154 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Belinsky, M. G. et al. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer 15, 887 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Gasparotto, D. et al. Quadruple-negative GIST is a sentinel for unrecognized neurofibromatosis type 1 syndrome. Clin. Cancer Res. 23, 273–282 (2017).

    CAS  PubMed  Google Scholar 

  47. Zoller, M. E., Rembeck, B., Oden, A., Samuelsson, M. & Angervall, L. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 79, 2125–2131 (1997).

    CAS  PubMed  Google Scholar 

  48. Ricci, R. et al. Telocytes are the physiological counterpart of inflammatory fibroid polyps and PDGFRA-mutant GISTs. J. Cell. Mol. Med. 22, 4856–4862 (2018). Report of telocytes as an alternative cell of origin to ICC in PDGFRA-mutant GIST.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maertens, O. et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum. Mol. Genet. 15, 1015–1023 (2006).

    CAS  PubMed  Google Scholar 

  50. Galvin, R. et al. Neurofibromatosis in the era of precision medicine: development of MEK inhibitors and recent successes with selumetinib. Curr. Oncol. Rep. 23, 45 (2021).

    CAS  PubMed  Google Scholar 

  51. Burgoyne, A. M. et al. Duodenal–jejunal flexure GI stromal tumor frequently heralds somatic NF1 and Notch pathway mutations. JCO Precis. Oncol. 1, 1–12 (2017).

    Google Scholar 

  52. Li, K. et al. Multiple gastrointestinal stromal tumors: analysis of clinicopathologic characteristics and prognosis of 20 patients. Cancer Manag. Res. 11, 7031–7038 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Miranda, C. et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin. Cancer Res. 18, 1769–1776 (2012).

    CAS  PubMed  Google Scholar 

  55. Mavroeidis, L. et al. Comprehensive molecular screening by next generation sequencing reveals a distinctive mutational profile of KIT/PDGFRA genes and novel genomic alterations: results from a 20-year cohort of patients with GIST from north-western Greece. ESMO Open 3, e000335 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Haefliger, S. et al. Molecular profile of gastrointestinal stromal tumors in sixty-eight patients from a single Swiss institution. Pathobiology 87, 171–178 (2020).

    CAS  PubMed  Google Scholar 

  57. Serrano, C. et al. KRAS and KIT gatekeeper mutations confer polyclonal primary imatinib resistance in GI stromal tumors: relevance of concomitant phosphatidylinositol 3-kinase/AKT dysregulation. J. Clin. Oncol. 33, e93–e96 (2015).

    PubMed  Google Scholar 

  58. Lasota, J. et al. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases. Mod. Pathol. 29, 275–282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Muhlenberg, T. et al. KIT-dependent and KIT-independent genomic heterogeneity of resistance in gastrointestinal stromal tumors — TORC1/2 inhibition as salvage strategy. Mol. Cancer Ther. 18, 1985–1996 (2019).

    PubMed  Google Scholar 

  60. Urbini, M. et al. Gene duplication, rather than epigenetic changes, drives FGF4 overexpression in KIT/PDGFRA/SDH/RAS-P WT GIST. Sci. Rep. 10, 19829 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sircar, K. et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am. J. Surg. Pathol. 23, 377–389 (1999).

    CAS  PubMed  Google Scholar 

  62. Sanders, K. M., Kito, Y., Hwang, S. J. & Ward, S. M. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology 31, 316–326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Al-Shboul, O. A. The importance of interstitial cells of Cajal in the gastrointestinal tract. Saudi J. Gastroenterol. 19, 3–15 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010). Detailed analysis of the subtypes of ICC that can give rise to GIST and first description of ETV1 as a crucial lineage-specific survival factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Manley, P. N. et al. Familial PDGFRA-mutation syndrome: somatic and gastrointestinal phenotype. Hum. Pathol. 76, 52–57 (2018).

    CAS  PubMed  Google Scholar 

  66. Kondo, J. et al. A smooth muscle-derived, Braf-driven mouse model of gastrointestinal stromal tumor (GIST): evidence for an alternative GIST cell-of-origin. J. Pathol. 252, 441–450 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ran, L. et al. ETV1-positive cells give rise to BRAF(V600E)-mutant gastrointestinal stromal tumors. Cancer Res. 77, 3758–3765 (2017). Using different mouse models, the preceding two references describe either ICC or smooth muscle precursor cells as the cell of origin in BRAF-mutant GIST.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mei, L. et al. Gastrointestinal stromal tumors: the GIST of precision medicine. Trends Cancer 4, 74–91 (2018).

    CAS  PubMed  Google Scholar 

  69. Ronnstrand, L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol. Life Sci. 61, 2535–2548 (2004). Excellent review of signal transduction from KIT and the role of its cognate ligand (stem cell factor) in normal physiological development and homeostasis.

    CAS  PubMed  Google Scholar 

  70. Duensing, A. et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23, 3999–4006 (2004).

    CAS  PubMed  Google Scholar 

  71. Daniels, M. et al. Spectrum of KIT/PDGFRA/BRAF mutations and phosphatidylinositol-3-kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett. 312, 43–54 (2011).

    CAS  PubMed  Google Scholar 

  72. Andersson, J. et al. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am. J. Surg. Pathol. 29, 1170–1176 (2005).

    PubMed  Google Scholar 

  73. Lussey-Lepoutre, C. et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784 (2015).

    CAS  PubMed  Google Scholar 

  74. Kim, E. et al. Utility of the succinate:fumarate ratio for assessing SDH dysfunction in different tumor types. Mol. Genet. Metab. Rep. 10, 45–49 (2017).

    CAS  PubMed  Google Scholar 

  75. Lussey-Lepoutre, C. et al. In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of SDHx mutations in paraganglioma. Clin. Cancer Res. 22, 1120–1129 (2016).

    CAS  PubMed  Google Scholar 

  76. Richter, S. et al. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J. Clin. Endocrinol. Metab. 99, 3903–3911 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013). Detailed molecular and genomic characterization of epigenetic reprogramming due to genome-wide DNA hypermethylation in SDH-deficient tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Eijkelenkamp, K., Osinga, T. E., Links, T. P. & van der Horst-Schrivers, A. N. A. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin. Genet. 97, 39–53 (2020).

    CAS  PubMed  Google Scholar 

  80. DeMatteo, R. P. et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann. Surg. 231, 51–58 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gatto, L. et al. Radiotherapy in the management of GIST: state of the art and new potential scenarios. Clin. Sarcoma Res. 7, 1 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cuaron, J. J., Goodman, K. A., Lee, N. & Wu, A. J. External beam radiation therapy for locally advanced and metastatic gastrointestinal stromal tumors. Radiat. Oncol. 8, 274 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Joensuu, H. et al. Radiotherapy for GIST progressing during or after tyrosine kinase inhibitor therapy: a prospective study. Radiother. Oncol. 116, 233–238 (2015). Only prospective study of the role of radiotherapy in the treatment of advanced-stage GIST.

    CAS  PubMed  Google Scholar 

  84. Dematteo, R. P., Heinrich, M. C., El-Rifai, W. M. & Demetri, G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum. Pathol. 33, 466–477 (2002). Excellent historical comparison of the clinical outcomes of patients with GIST.

    CAS  PubMed  Google Scholar 

  85. Heinrich, M. C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932 (2000). One of the first descriptions of imatinib as an inhibitor of both wild-type and exon 11-mutant KIT.

    CAS  PubMed  Google Scholar 

  86. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002). Phase II trial that led to FDA approval of imatinib for patients with advanced-stage GIST.

    CAS  PubMed  Google Scholar 

  87. van Oosterom, A. T. et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423 (2001).

    PubMed  Google Scholar 

  88. Verweij, J. et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364, 1127–1134 (2004).

    CAS  PubMed  Google Scholar 

  89. Blanke, C. D. et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol. 26, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  90. Novartis GLEEVEC (imatinib mesylate) Tablets Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021588s024lbl.pdf (Novartis, 2001).

  91. Heinrich, M. et al. Correlation of long-term results of imatinib in advanced gastrointestinal stromal tumors with next-generation sequencing results: analysis of phase 3 SWOG intergroup trial S0033. JAMA Oncol. 3, 944–952 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Casali, P. G. et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long-term analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Trials Group intergroup phase III randomized trial on imatinib at two dose levels. J. Clin. Oncol. 35, 1713–1720 (2017).

    PubMed  Google Scholar 

  93. Sodergren, S. C. et al. Systematic review of the side effects associated with tyrosine kinase inhibitors used in the treatment of gastrointestinal stromal tumours on behalf of the EORTC Quality of Life Group. Crit. Rev. Oncol. Hematol. 91, 35–46 (2014).

    PubMed  Google Scholar 

  94. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006). Placebo-controlled phase III trial that led to FDA approval of sunitinib for advanced-stage GIST.

    CAS  PubMed  Google Scholar 

  95. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    CAS  PubMed  Google Scholar 

  96. Debiec-Rychter, M. et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer 42, 1093–1103 (2006). In the preceding two papers, clinical outcomes with imatinib are correlated with tumour mutational status in patients with advanced-stage GIST, which provided a rationale for using a precision oncology approach to treatment selection.

    CAS  PubMed  Google Scholar 

  97. Casali, P. G. et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 33, 20–33 (2021).

    PubMed  Google Scholar 

  98. Heinrich, M. C. et al. Avapritinib is highly active and well-tolerated in patients with advanced GIST driven by a diverse variety of oncogenic mutations in KIT and PDGFRA. Connective Tissue Oncology Society Annual Meeting (2018).

  99. Heinrich, M. C. et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol. 21, 935–946 (2020). First results from the phase I trial that led to FDA approval of avapritinib for advanced-stage PDGFRA exon 11-mutant GIST.

    CAS  PubMed  Google Scholar 

  100. Blueprint Medicines AYVAKIT (avapritinib) Tablets, for Oral Use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212608s000lbl.pdf (Blueprint Medicines, 2020).

  101. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hong, D. S. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 21, 531–540 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Solomon, J. P. & Hechtman, J. F. Detection of NTRK fusions: merits and limitations of current diagnostic platforms. Cancer Res. 79, 3163–3168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Janeway, K. A. et al. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr. Blood Cancer 52, 767–771 (2009).

    PubMed  Google Scholar 

  105. Gupta, A. et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc. Natl Acad. Sci. USA 107, 14333–14338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Y. et al. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis. Cancer Res. 68, 9015–9023 (2008).

    CAS  PubMed  Google Scholar 

  107. Le Cesne, A. et al. Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol. 11, 942–949 (2010).

    PubMed  Google Scholar 

  108. Patrikidou, A. et al. Long-term outcome of molecular subgroups of GIST patients treated with standard-dose imatinib in the BFR14 trial of the French Sarcoma Group. Eur. J. Cancer 52, 173–180 (2016).

    CAS  PubMed  Google Scholar 

  109. Boichuk, S. et al. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res. 73, 5120–5129 (2013).

    CAS  PubMed  Google Scholar 

  110. Joensuu, H. et al. Adjuvant imatinib for high-risk GI stromal tumor: analysis of a randomized trial. J. Clin. Oncol. 34, 244–250 (2016).

    CAS  PubMed  Google Scholar 

  111. Joensuu, H. et al. Survival outcomes associated with 3 years vs 1 year of adjuvant imatinib for patients with high-risk gastrointestinal stromal tumors: an analysis of a randomized clinical trial after 10-year follow-up. JAMA Oncol. 6, 1241–1246 (2020).

    PubMed  Google Scholar 

  112. Casali, P. G. et al. Final analysis of the randomized trial on imatinib as an adjuvant in localized gastrointestinal stromal tumors (GIST) from the EORTC Soft Tissue and Bone Sarcoma Group (STBSG), the Australasian Gastro-Intestinal Trials Group (AGITG), UNICANCER, French Sarcoma Group (FSG), Italian Sarcoma Group (ISG), and Spanish Group for Research on Sarcomas (GEIS). Ann. Oncol. 32, 533–541 (2021).

    CAS  PubMed  Google Scholar 

  113. Raut, C. P. et al. Efficacy and tolerability of 5-year adjuvant imatinib treatment for patients with resected intermediate- or high-risk primary gastrointestinal stromal tumor: the PERSIST-5 clinical trial. JAMA Oncol. 4, e184060 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Al-Ali, H. K. et al. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol. J. 5, 55–60 (2004).

    CAS  PubMed  Google Scholar 

  115. Gramza, A. W., Corless, C. L. & Heinrich, M. C. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin. Cancer Res. 15, 7510–7518 (2009).

    CAS  PubMed  Google Scholar 

  116. Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    CAS  PubMed  Google Scholar 

  117. Bertucci, F. et al. Acquired resistance to imatinib and secondary KIT exon 13 mutation in gastrointestinal stromal tumour. Oncol. Rep. 16, 97–101 (2006).

    CAS  PubMed  Google Scholar 

  118. McLean, S. R. et al. Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol. Cancer Ther. 4, 2008–2015 (2005).

    CAS  PubMed  Google Scholar 

  119. Chen, L. L. et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 64, 5913–5919 (2004).

    CAS  PubMed  Google Scholar 

  120. Demetri, G. D. et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 295–302 (2013). Placebo-controlled phase III trial that led to FDA approval of regorafenib for advanced-stage GIST.

    CAS  PubMed  Google Scholar 

  121. Serrano, C. et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br. J. Cancer 120, 612–620 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Heinrich, M. C. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol. 26, 5352–5359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Smith, B. D. et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell 35, 738–751.e739 (2019).

    CAS  PubMed  Google Scholar 

  124. Blay, J. Y. et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 21, 923–934 (2020). Placebo-controlled phase III trial that led to FDA approval of ripretinib for advanced-stage GIST previously treated with imatinib, sunitinib and regorafenib.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Deciphera Pharmaceuticals QINLOCK™ (ripretinib) Tablets, for Oral Use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213973s000lbl.pdf (Deciphera Pharmaceuticals, 2020).

  126. Grunewald, S. et al. Resistance to avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer Discov. 11, 108–125 (2020).

    PubMed  Google Scholar 

  127. Somwar, R. et al. NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors. Commun. Biol. 3, 776 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Banks, E. et al. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Sci. Transl. Med. 12, eaaz2481 (2020).

    CAS  PubMed  Google Scholar 

  129. Rivera, V. M., Huang, W. S., Pritchard, J. R., Dalgamo, D. C. & Shakespeare, W. C. Abstract 1292: preclinical characterization of THE-630, a next-generation inhibitor for KIT-mutant gastrointestinal stromal tumors (GIST). Cancer Res. 81, 1292 (2021).

    Google Scholar 

  130. Tumbrink, H. L., Heimsoeth, A. & Sos, M. L. The next tier of EGFR resistance mutations in lung cancer. Oncogene 40, 1–11 (2021).

    CAS  PubMed  Google Scholar 

  131. Zabriskie, M. S. et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 26, 428–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kang, K. H. et al. Compound mutations involving T315I and P-loop mutations are the major components of multiple mutations detected in tyrosine kinase inhibitor resistant chronic myeloid leukemia. Leuk. Res. 76, 87–93 (2019).

    CAS  PubMed  Google Scholar 

  133. Serrano, C. et al. Phase I study of rapid alternation of sunitinib and regorafenib for the treatment of tyrosine kinase inhibitor refractory gastrointestinal stromal tumors. Clin. Cancer Res. 25, 7287–7293 (2019).

    CAS  PubMed  Google Scholar 

  134. Wagner, A. J. et al. Association of combination of conformation-specific KIT inhibitors with clinical benefit in patients with refractory gastrointestinal stromal tumors: a phase 1b/2a nonrandomized clinical trial. JAMA Oncol. 7, 1343–1350 (2021). Description of the combined use of KIT TKIs with complementary activity to overcome drug-resistant GIST.

    PubMed  Google Scholar 

  135. Gupta, A. et al. Ripretinib and MEK inhibitors synergize to induce apoptosis in preclinical models of GIST and systemic mastocytosis. Mol. Cancer Ther. 20, 1234–1245 (2021).

    CAS  PubMed  Google Scholar 

  136. Floris, G. et al. A potent combination of the novel PI3K inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal. Clin. Cancer Res. 19, 620–630 (2013).

    CAS  PubMed  Google Scholar 

  137. Chi, P. et al. Phase Ib trial of the combination of imatinib and binimetinib in patients with advanced gastrointestinal stromal tumors (GIST). Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-3909 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gelderblom, H. et al. Imatinib in combination with phosphoinositol kinase inhibitor buparlisib in patients with gastrointestinal stromal tumour who failed prior therapy with imatinib and sunitinib: a phase 1b, multicentre study. Br. J. Cancer 122, 1158–1165 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chi, P. et al. Phase II trial of imatinib plus binimetinib in patients with treatment-naive advanced gastrointestinal stromal tumor. J. Clin. Oncol. https://doi.org/10.1200/JCO.21.02029 (2022).

  140. Gupta, A., Ma, S., Che, K., Pobbati, A. V. & Rubin, B. P. Inhibition of PI3K and MAPK pathways along with KIT inhibitors as a strategy to overcome drug resistance in gastrointestinal stromal tumors. PLoS ONE 16, e0252689 (2021). Intriguing description of triplet therapy targeting the KIT, PI3K and MAPK signalling pathways to overcome in vitro quiescence of TKI-resistant GIST cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    PubMed  Google Scholar 

  142. Schumacher, D., Hackenberger, C. P., Leonhardt, H. & Helma, J. Current status: site-specific antibody drug conjugates. J. Clin. Immunol. 36, 100–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Joubert, N., Beck, A., Dumontet, C. & Denevault-Sabourin, C. Antibody-drug conjugates: the last decade. Pharmaceuticals 13, 245 (2020).

    CAS  PubMed Central  Google Scholar 

  144. Baah, S., Laws, M. & Rahman, K. M. Antibody-drug conjugates-a tutorial review. Molecules 26, 2943 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Iida, K. et al. Identification and therapeutic targeting of GPR20, selectively expressed in gastrointestinal stromal tumors, with DS-6157a, a first-in-class antibody-drug conjugate. Cancer Discov. 11, 1508–1523 (2021). Description of a novel GPR20-targeted antibody–drug conjugate that is currently being tested in a phase I/II trial involving patients with GIST.

    CAS  PubMed  Google Scholar 

  146. Vahidfar, N. et al. An impressive approach in nuclear medicine: theranostics. PET Clin. 16, 327–340 (2021).

    PubMed  Google Scholar 

  147. Strosberg, J. et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Reubi, J. C., Korner, M., Waser, B., Mazzucchelli, L. & Guillou, L. High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur. J. Nucl. Med. Mol. Imag. 31, 803–810 (2004).

    CAS  Google Scholar 

  150. Zhao, W. Y. et al. Somatostatin receptors in gastrointestinal stromal tumors: new prognostic biomarker and potential therapeutic strategy. Am. J. Transl. Res. 6, 831–840 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Loaiza-Bonilla, A. & Bonilla-Reyes, P. A. Somatostatin receptor avidity in gastrointestinal stromal tumors: theranostic implications of gallium-68 scan and eligibility for peptide receptor radionuclide therapy. Cureus 9, e1710 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Arne, G. et al. Gastrointestinal stromal tumors (GISTs) express somatostatin receptors and bind radiolabeled somatostatin analogs. Acta Oncol. 52, 783–792 (2013).

    CAS  PubMed  Google Scholar 

  153. Paulmichl, A. et al. Targeting gastrointestinal stromal tumor with (68)Ga-labeled peptides: an in vitro study on gastrointestinal stromal tumor-cell lines. Cancer Biother Radiopharm. 31, 302–310 (2016).

    CAS  PubMed  Google Scholar 

  154. Montemagno, C. et al. In vivo biodistribution and efficacy evaluation of NeoB, a radiotracer targeted to GRPR, in mice bearing gastrointestinal stromal tumor. Cancers 13, 1051 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gruber, L. et al. MITIGATE-NeoBOMB1, a phase I/IIa study to evaluate safety, pharmacokinetics, and preliminary imaging of (68)Ga-NeoBOMB1, a gastrin-releasing peptide receptor antagonist, in GIST patients. J. Nucl. Med. 61, 1749–1755 (2020).

    CAS  PubMed  Google Scholar 

  156. Sulkowski, P. L. et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat. Genet. 50, 1086–1092 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Tong, A. et al. Temozolomide is a potential therapeutic tool for patients with metastatic pheochromocytoma/paraganglioma-case report and review of the literature. Front. Endocrinol. 11, 61 (2020).

    Google Scholar 

  158. Tena, I. et al. Successful second-line metronomic temozolomide in metastatic paraganglioma: case reports and review of the literature. Clin. Med. Insights Oncol. 12, 1179554918763367 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    CAS  PubMed  Google Scholar 

  160. Ricci, R. et al. Preferential MGMT methylation could predispose a subset of KIT/PDGFRA-WT GISTs, including SDH-deficient ones, to respond to alkylating agents. Clin. Epigenetics 11, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Yebra, M. et al. Establishment of patient-derived succinate dehydrogenase-deficient gastrointestinal stromal tumor models for predicting therapeutic response. Clin. Cancer Res. 28, 187–200 (2022). This manuscript details the rationale for an ongoing phase II trial of temozolomide in patients with SDH-deficient GIST.

    CAS  PubMed  Google Scholar 

  162. Singh, A. S. et al. A randomized phase 2 study of nivolumab monotherapy or nivolumab combined with ipilimumab in patients with advanced gastrointestinal stromal tumors. Clin. Cancer Res. 28, 84–94 (2022).

    CAS  PubMed  Google Scholar 

  163. Seifert, A. M. et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin. Cancer Res. 23, 454–465 (2017).

    CAS  PubMed  Google Scholar 

  164. Balachandran, V. P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094–1100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Medina, B. D. et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J. Exp. Med. 216, 1359–1376 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu, M. et al. Oncogenic KIT modulates type I IFN-mediated antitumor immunity in GIST. Cancer Immunol. Res. 9, 542–553 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen, L. L. et al. Exploiting antitumor immunity to overcome relapse and improve remission duration. Cancer Immunol. Immunother. 61, 1113–1124 (2012). The preceding five references describe the immune microenvironment of GIST and the effects of TKIs on the immune response, as well as potential approaches to augment the immune response as a therapeutic strategy.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of M.C.H. has been supported by grants from the Department of Veterans Affairs (1 I01 BX005358-01A1) and the NIH National Cancer Institute (1 R21 CA263400-01), and by philanthropic donations from the GIST Cancer Research Fund and the Jonathan David Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.R.K. and M.C.H. made substantial contributions to the content. All authors contributed to the writing and review/editing of manuscript before submission.

Corresponding author

Correspondence to Michael C. Heinrich.

Ethics declarations

Competing interests

M.C.H. has been a consultant for Blueprint Medicines, Deciphera Pharmaceuticals, Novartis and Theseus Pharmaceuticals, and has a patent for the treatment of GIST using imatinib that has been licensed by his institute to Novartis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks H. Joensuu, T. Nishida, P. Rutkowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klug, L.R., Khosroyani, H.M., Kent, J.D. et al. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 19, 328–341 (2022). https://doi.org/10.1038/s41571-022-00606-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00606-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer