Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment

Abstract

Congestion is the main reason for hospitalization in patients with acute decompensated heart failure and is an important target for therapy. However, achieving complete decongestion can be challenging. Furthermore, residual congestion before discharge from hospital is associated with a high risk of early rehospitalization and death. An improved understanding of the pathophysiology of congestion is of great importance in finding better and more personalized therapies. In this Review, we describe the two different forms of congestion — intravascular congestion and tissue congestion — and hypothesize that differentiating between and specifically treating these two different forms of congestion could improve the outcomes of patients with acute decompensated heart failure. Although the majority of these patients have a combination of both intravascular and tissue congestion, one phenotype can dominate. Each of these two forms of congestion has a different pathophysiology and requires a different diagnostic approach. We provide an overview of novel and established biomarkers, imaging modalities and mechanical techniques for identifying each type of congestion. Treatment with loop diuretics, the current cornerstone of decongestive treatment, reduces circulating blood volume and thereby reduces intravascular congestion. However, the osmolality of the circulating blood decreases with the use of loop diuretics, which might result in less immediate translocation of fluid from the tissues (lungs, abdomen and periphery) to the circulation when the plasma refill rate is exceeded. By contrast, aquaretic drugs (such as vasopressin antagonists) predominantly cause water excretion, which increases the osmolality of the circulating blood, potentially improving translocation of fluid from the tissues to the circulation and thereby relieving tissue congestion.

Key points

  • Congestion is the main reason for hospitalization in patients with acute decompensated heart failure.

  • Residual congestion at discharge from hospital is associated with higher rates of death and hospital readmission for heart failure.

  • Congestion can be present predominantly in the vascular system (intravascular congestion) or in the interstitium (tissue congestion), although the majority of patients have a combination of both intravascular and tissue congestion.

  • Intravascular congestion and tissue congestion can be identified and differentiated with the use of specific diagnostic assessments, such as physical examination, biomarkers and imaging techniques.

  • Loop diuretic therapy reduces circulating blood volume, thereby improving intravascular congestion; however, these therapies increase plasma osmolality, which might impede translocation of fluid from the tissues to the circulation.

  • Aquaretic drugs, such as vasopressin antagonists, reduce plasma volume and lower plasma osmolality, which might stimulate translocation of fluid from the tissues to the circulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of tissue congestion.
Fig. 2: Hypothesized differences between tissue congestion and intravascular congestion.
Fig. 3: Sites of action of natriuretic and aquaretic drugs in the nephrons.
Fig. 4: Treatment algorithm for intravascular congestion and tissue congestion.

Similar content being viewed by others

Antoni Torres, Catia Cilloniz, … Tom van der Poll

References

  1. Martens, P., Nijst, P. & Mullens, W. Current approach to decongestive therapy in acute heart failure. Curr. Heart Fail. Rep. 12, 367–378 (2015).

    PubMed  Google Scholar 

  2. Chioncel, O. et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 19, 1242–1254 (2017).

    PubMed  Google Scholar 

  3. Filippatos, G. et al. Global differences in characteristics, precipitants, and initial management of patients presenting with acute heart failure. JAMA Cardiol. 5, 401–410 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297, 1319–1331 (2007).

    CAS  PubMed  Google Scholar 

  5. Rubio-Gracia, J. et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int. J. Cardiol. 258, 185–191 (2018).

    PubMed  Google Scholar 

  6. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    PubMed  Google Scholar 

  7. Felker, G. M. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall, J. E. in Guyton and Hall Textbook of Medical Physiology 296–300 (Saunders, 2011).

  9. Viau, D. M., Sala-Mercado, J. A., Spranger, M. D., O’Leary, D. S. & Levy, P. D. The pathophysiology of hypertensive acute heart failure. Heart 101, 1861–1867 (2015).

    CAS  PubMed  Google Scholar 

  10. Liu, J. X., Uppal, S. & Patel, V. Management of acute hypertensive heart failure. Heart Fail. Clin. 15, 565–574 (2019).

    PubMed  Google Scholar 

  11. Cotter, G. et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet 351, 389–393 (1998).

    CAS  PubMed  Google Scholar 

  12. Levy, P. et al. Treatment of severe decompensated heart failure with high-dose intravenous nitroglycerin: a feasibility and outcome analysis. Ann. Emerg. Med. 50, 144–152 (2007).

    PubMed  Google Scholar 

  13. Gheorghiade, M. et al. Congestion is an important diagnostic and therapeutic target in heart failure. Rev. Cardiovasc. Med. 7 (Suppl. 1), S12–S24 (2006).

    PubMed  Google Scholar 

  14. Zucker, I. H. et al. The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Prog. Biophys. Mol. Biol. 84, 217–232 (2004).

    CAS  PubMed  Google Scholar 

  15. Nohria, A. et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J. Am. Coll. Cardiol. 41, 1797–1804 (2003).

    PubMed  Google Scholar 

  16. Burkhoff, D. & Tyberg, J. V. Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am. J. Physiol. 265, H1819–H1828 (1993).

    CAS  PubMed  Google Scholar 

  17. Fallick, C., Sobotka, P. A. & Dunlap, M. E. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ. Heart Fail. 4, 669–675 (2011).

    PubMed  Google Scholar 

  18. Gelman, S. Venous function and central venous pressure: a physiologic story. Anesthesiology 108, 735–748 (2008).

    PubMed  Google Scholar 

  19. Fudim, M. et al. Splanchnic nerve block for acute heart failure. Circulation 138, 951–953 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Morse, M. A. & Rutlen, D. L. Influence of nitroglycerin on splanchnic capacity and splanchnic capacity-cardiac output relationship. J. Appl. Physiol. 76, 112–119 (1994).

    CAS  PubMed  Google Scholar 

  21. Schmid-Schönbein, G. W. Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1028 (1990).

    PubMed  Google Scholar 

  22. Guyton, A. C. et al. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ. Res. 7, 649–657 (1959).

    CAS  PubMed  Google Scholar 

  23. Haworth, S. G., Hall, S. M. & Patel, M. Peripheral pulmonary vascular and airway abnormalities in adolescents with rheumatic mitral stenosis. Int. J. Cardiol. 18, 405–416 (1988).

    CAS  PubMed  Google Scholar 

  24. Hommel, E., Mathiesen, E. R., Aukland, K. & Parving, H. H. Pathophysiological aspects of edema formation in diabetic nephropathy. Kidney Int. 38, 1187–1192 (1990).

    CAS  PubMed  Google Scholar 

  25. Bollinger, A. et al. Patterns of diffusion through skin capillaries in patients with long-term diabetes. N. Engl. J. Med. 307, 1305–1310 (1982).

    CAS  PubMed  Google Scholar 

  26. Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484–1497 (2016).

    CAS  PubMed  Google Scholar 

  27. Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504 (2005).

    CAS  PubMed  Google Scholar 

  28. Li, J. et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, H1803–H1811 (1996).

    CAS  PubMed  Google Scholar 

  29. Binanay, C. et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294, 1625–1633 (2005).

    PubMed  Google Scholar 

  30. Gheorghiade, M. et al. Assessing and grading congestion in acute heart failure: a scientific statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 12, 423–433 (2010).

    PubMed  Google Scholar 

  31. van’t Laar, A. Why is the measurement of jugular venous pressure discredited? Neth. J. Med. 61, 268–272 (2003).

    PubMed  Google Scholar 

  32. Breidthardt, T. et al. How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure? Insights from a prospective study. Eur. J. Heart Fail. 20, 1160–1162 (2018).

    PubMed  Google Scholar 

  33. Wynne, J. The clinical meaning of the third heart sound. Am. J. Med. 111, 157–158 (2001).

    CAS  PubMed  Google Scholar 

  34. Ramani, S. & Weber, B. N. Detecting the gallop: the third heart sound and its significance. Med. J. Aust. 206, 198–199 (2017).

    PubMed  Google Scholar 

  35. Thibodeau, J. T. et al. Characterization of a novel symptom of advanced heart failure: bendopnea. JACC Heart Fail. 2, 24–31 (2014).

    PubMed  Google Scholar 

  36. Baeza-Trinidad, R., Mosquera-Lozano, J. D., Gómez-Del Mazo, M. & Ariño-Pérez de Zabalza, I. Evolution of bendopnea during admission in patients with decompensated heart failure. Eur. J. Intern. Med. 51, e23–e24 (2018).

    PubMed  Google Scholar 

  37. Karauzum, K. et al. Bendopnea and its clinical importance in outpatient patients with pulmonary arterial hypertension. Acta Cardiol. Sin. 34, 518–525 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Levin, E. R., Gardner, D. G. & Samson, W. K. Natriuretic peptides. N. Engl. J. Med. 339, 321–328 (1998).

    CAS  PubMed  Google Scholar 

  39. Omar, H. R. & Guglin, M. Clinical and prognostic significance of positive hepatojugular reflux on discharge in acute heart failure: insights from the ESCAPE trial. Biomed. Res. Int. 2017, 5734749 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Beltrami, M. et al. Different trajectories and significance of B-type natriuretic peptide, congestion and acute kidney injury in patients with heart failure. Intern. Emerg. Med. 12, 593–603 (2017).

    PubMed  Google Scholar 

  41. Francis, G. S., Felker, G. M. & Tang, W. H. W. A test in context: critical evaluation of natriuretic peptide testing in heart failure. J. Am. Coll. Cardiol. 67, 330–337 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Stienen, S. et al. NT-proBNP (N-terminal pro-B-type natriuretic peptide)-guided therapy in acute decompensated heart failure: PRIMA II randomized controlled trial (Can NT-ProBNP-guided therapy during hospital admission for acute decompensated heart failure reduce mortality and readmissions?). Circulation 137, 1671–1683 (2018).

    CAS  PubMed  Google Scholar 

  43. Felker, G. M. et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318, 713–720 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyle, A. & Sobotka, P. A. Redefining the therapeutic objective in decompensated heart failure: hemoconcentration as a surrogate for plasma refill rate. J. Card. Fail. 12, 247–249 (2006).

    PubMed  Google Scholar 

  45. Testani, J. M., Chen, J., McCauley, B. D., Kimmel, S. E. & Shannon, R. P. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122, 265–272 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Ter Maaten, J. M. et al. Combining diuretic response and hemoconcentration to predict rehospitalization after admission for acute heart failure. Circ. Heart Fail. 9, e002845 (2016).

    PubMed  Google Scholar 

  47. van der Meer, P. et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J. Am. Coll. Cardiol. 61, 1973–1981 (2013).

    PubMed  Google Scholar 

  48. Davila, C., Reyentovich, A. & Katz, S. D. Clinical correlates of hemoconcentration during hospitalization for acute decompensated heart failure. J. Card. Fail. 17, 1018–1022 (2011).

    PubMed  Google Scholar 

  49. Grau Amorós, J. et al. Hemoconcentration as a prognostic factor after hospital discharge in acute heart failure in the RICA registry. Rev. Clin. Esp. 219, 1–9 (2019).

    PubMed  Google Scholar 

  50. Fujita, T. et al. Hemodilution after initial treatment in patients with acute decompensated heart failure. Int. Heart J. 59, 573–579 (2018).

    CAS  PubMed  Google Scholar 

  51. Schroeder, K. L., Sallustio, J. E. & Ross, E. A. Continuous haematocrit monitoring during intradialytic hypotension: precipitous decline in plasma refill rates. Nephrol. Dial. Transplant. 19, 652–656 (2004).

    PubMed  Google Scholar 

  52. Kircher, B. J., Himelman, R. B. & Schiller, N. B. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am. J. Cardiol. 66, 493–496 (1990).

    CAS  PubMed  Google Scholar 

  53. Khandwalla, R. M. et al. Usefulness of serial measurements of inferior vena cava diameter by VscanTM to identify patients with heart failure at high risk of hospitalization. Am. J. Cardiol. 119, 1631–1636 (2017).

    PubMed  Google Scholar 

  54. Jobs, A. et al. Inferior vena cava diameter in acute decompensated heart failure as predictor of all-cause mortality. Heart Vessel. 32, 856–864 (2017).

    Google Scholar 

  55. Pellicori, P. et al. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur. J. Heart Fail. 21, 904–916 (2019).

    CAS  PubMed  Google Scholar 

  56. Pellicori, P. et al. Revisiting a classical clinical sign: jugular venous ultrasound. Int. J. Cardiol. 170, 364–370 (2014).

    PubMed  Google Scholar 

  57. Pellicori, P. et al. Prognostic significance of ultrasound-assessed jugular vein distensibility in heart failure. Heart 101, 1149–1158 (2015).

    CAS  PubMed  Google Scholar 

  58. Nijst, P., Martens, P., Dupont, M., Tang, W. H. W. & Mullens, W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail. 5, 672–681 (2017).

    PubMed  Google Scholar 

  59. Iida, N. et al. Clinical implications of intrarenal hemodynamic evaluation by Doppler ultrasonography in heart failure. JACC Heart Fail. 4, 674–682 (2016).

    PubMed  Google Scholar 

  60. Handoko, M. L. et al. A critical appraisal of transpulmonary and diastolic pressure gradients. Physiol. Rep. 4, e12910 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Assaad, M., Sarsam, S., Naqvi, A. & Zughaib, M. CardioMems® device implantation reduces repeat hospitalizations in heart failure patients: a single center experience. JRSM Cardiovasc. Dis. 8, 2048004019833290 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Givertz, M. M. et al. Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 70, 1875–1886 (2017).

    PubMed  Google Scholar 

  63. Kumar, V., Abbas, A. K. & Aster, J. C. Robbins and Cotran Pathologic Basis of Disease (Saunders, 2010).

  64. Kelder, J. C. et al. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation 124, 2865–2873 (2011).

    PubMed  Google Scholar 

  65. Koyama, T. et al. Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation 127, 842–853 (2013).

    CAS  PubMed  Google Scholar 

  66. Voors, A. A. et al. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur. J. Heart Fail. 21, 163–171 (2019).

    CAS  PubMed  Google Scholar 

  67. Tolppanen, H. et al. Adrenomedullin: a marker of impaired hemodynamics, organ dysfunction, and poor prognosis in cardiogenic shock. Ann. Intensive Care 7, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Caironi, P. et al. Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis. Chest 152, 312–320 (2017).

    PubMed  Google Scholar 

  69. Molvin, J. et al. Bioactive adrenomedullin, proenkephalin A and clinical outcomes in an acute heart failure setting. Open Heart 6, e001048 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Ter Maaten, J. M. et al. Bio-adrenomedullin as a marker of congestion in patients with new-onset and worsening heart failure. Eur. J. Heart Fail. 21, 732–743 (2019).

    PubMed  Google Scholar 

  71. Arrigo, M., Parenica, J., Ganovska, E., Pavlusova, M. & Mebazaa, A. Plasma bio-adrenomedullin is a marker of acute heart failure severity in patients with acute coronary syndrome. Int. J. Cardiol. Heart Vasc. 22, 174–176 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Pandhi, P. et al. Clinical value of pre-discharge bio-adrenomedullin as a marker of residual congestion and high risk of heart failure hospital readmission. Eur. J. Heart Fail. 22, 683–691 (2020).

    CAS  PubMed  Google Scholar 

  73. Arrigo, M. et al. Soluble CD146 is a novel marker of systemic congestion in heart failure patients: an experimental mechanistic and transcardiac clinical study. Clin. Chem. 63, 386–393 (2017).

    CAS  PubMed  Google Scholar 

  74. Van Aelst, L. N. L. et al. Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur. J. Heart Fail. 20, 738–747 (2018).

    PubMed  Google Scholar 

  75. Kubena, P. et al. Plasma levels of soluble CD146 reflect the severity of pulmonary congestion better than brain natriuretic peptide in acute coronary syndrome. Ann. Lab. Med. 36, 300–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Núnez, J. et al. Clinical utility of antigen carbohydrate 125 in heart failure. Heart Fail. Rev. 19, 575–584 (2014).

    PubMed  Google Scholar 

  77. de la Espriella-Juan, R., Núñez, J., Núñez, E., Sanchis, J. & Bayés-Genis, A. Carbohydrate antigen-125 in heart failure: an overlooked biomarker of congestion. JACC Heart Fail. 6, 441–442 (2018).

    PubMed  Google Scholar 

  78. Kouris, N. T. et al. The significance of CA125 levels in patients with chronic congestive heart failure. Correlation with clinical and echocardiographic parameters. Eur. J. Heart Fail. 7, 199–203 (2005).

    CAS  PubMed  Google Scholar 

  79. Durak-Nalbantic, A. et al. Serum level of tumor marker carbohydrate antigen-CA125 in heart failure. Med. Arch. 67, 241–244 (2013).

    PubMed  Google Scholar 

  80. Falcão, F. J. A. et al. Carbohydrate antigen 125 predicts pulmonary congestion in patients with ST-segment elevation myocardial infarction. Braz. J. Med. Biol. Res. 52, e9124 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Núñez, J. et al. Carbohydrate antigen-125-guided therapy in acute heart failure: CHANCE-HF: a randomized study. JACC Heart Fail. 4, 833–843 (2016).

    PubMed  Google Scholar 

  82. Ware, L. B. et al. Comparison of chest radiograph scoring to lung weight as a quantitative index of pulmonary edema in organ donors. Clin. Transpl. 26, 665–671 (2012).

    Google Scholar 

  83. Kobayashi, M. et al. Mid-term prognostic impact of residual pulmonary congestion assessed by radiographic scoring in patients admitted for worsening heart failure. Int. J. Cardiol. 289, 91–98 (2019).

    PubMed  Google Scholar 

  84. Pistolesi, M., Milne, E. N., Miniati, M. & Giuntini, C. The vascular pedicle of the heart and the vena azygos. Part II: Acquired heart disease. Radiology 152, 9–17 (1984).

    CAS  PubMed  Google Scholar 

  85. Collins, S. P. et al. Clinical and research considerations for patients with hypertensive acute heart failure: a consensus statement from the Society for Academic Emergency Medicine and the Heart Failure Society of America Acute Heart Failure Working Group. Acad. Emerg. Med. 23, 922–931 (2016).

    PubMed  Google Scholar 

  86. Martindale, J. L. et al. Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Acad. Emerg. Med. 23, 223–242 (2016).

    PubMed  Google Scholar 

  87. Picano, E. & Pellikka, P. A. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur. Heart J. 37, 2097–2104 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Gargani, L. Lung ultrasound: a new tool for the cardiologist. Cardiovasc. Ultrasound 9, 6 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Miglioranza, M. H. et al. Pulmonary congestion evaluated by lung ultrasound predicts decompensation in heart failure outpatients. Int. J. Cardiol. 240, 271–278 (2017).

    PubMed  Google Scholar 

  90. Miglioranza, M. H. et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc. Imaging 6, 1141–1151 (2013).

    PubMed  Google Scholar 

  91. Gattinoni, L., Caironi, P., Pelosi, P. & Goodman, L. R. What has computed tomography taught us about the acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med. 164, 1701–1711 (2001).

    CAS  PubMed  Google Scholar 

  92. Brasileiro, F. C. et al. High-resolution CT scan in the evaluation of exercise-induced interstitial pulmonary edema in cardiac patients. Chest 111, 1577–1582 (1997).

    CAS  PubMed  Google Scholar 

  93. Massari, F. et al. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition 61, 56–60 (2019).

    PubMed  Google Scholar 

  94. Génot, N. et al. Bioelectrical impedance analysis for heart failure diagnosis in the ED. Am. J. Emerg. Med. 33, 1025–1029 (2015).

    PubMed  Google Scholar 

  95. Facchini, C. et al. Lung ultrasound and transthoracic impedance for noninvasive evaluation of pulmonary congestion in heart failure. J. Cardiovasc. Med. 17, 510–517 (2016).

    Google Scholar 

  96. Amir, O. et al. Validation of remote dielectric sensing (ReDS™) technology for quantification of lung fluid status: comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int. J. Cardiol. 221, 841–846 (2016).

    PubMed  Google Scholar 

  97. Amir, O. et al. Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations. Int. J. Cardiol. 240, 279–284 (2017).

    PubMed  Google Scholar 

  98. Koeppen, B. M. & Stanton, B. A. Renal Physiology (Elsevier, 2019).

  99. Yu, A. S. L. et al. in Brenner and Rector’s The Kidney 1708–1740 (Elsevier, 2020).

  100. Udelson, J. E. et al. A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J. Card. Fail. 17, 973–981 (2011).

    CAS  PubMed  Google Scholar 

  101. Zimmer, C. A. et al. Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am. J. Physiol. 290, F273–F278 (2006).

    Google Scholar 

  102. Veeraveedu, P. T. et al. Effects of V2-receptor antagonist tolvaptan and the loop diuretic furosemide in rats with heart failure. Biochem. Pharmacol. 75, 1322–1330 (2008).

    CAS  PubMed  Google Scholar 

  103. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 70, 776–803 (2017).

    PubMed  Google Scholar 

  104. Faris, R. F., Flather, M., Purcell, H., Poole-Wilson, P. A. & Coats, A. J. S. Diuretics for heart failure. Cochrane Database Syst. Rev. 2, CD003838 (2012).

    Google Scholar 

  105. Masoumi, A., Ortiz, F., Radhakrishnan, J., Schrier, R. & Colombo, P. Mineralocorticoid receptor antagonists as diuretics: can congestive heart failure learn from liver failure? Heart Fail. Rev. 20, 283–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    CAS  PubMed  Google Scholar 

  107. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  108. Rossignol, P. et al. Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) substudy. J. Am. Coll. Cardiol. 58, 1958–1966 (2011).

    CAS  PubMed  Google Scholar 

  109. Rales Investigators. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am. J. Cardiol. 78, 902–907 (1996).

    Google Scholar 

  110. Struthers, A., Krum, H. & Williams, G. H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin. Cardiol. 31, 153–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. Kapelios, C. J. et al. Association between high-dose spironolactone and decongestion in patients with acute heart failure: an observational retrospective study. Am. J. Cardiovasc. Drugs 18, 415–422 (2018).

    CAS  PubMed  Google Scholar 

  112. Hensen, J., Abraham, W. T., Dürr, J. A. & Schrier, R. W. Aldosterone in congestive heart failure: analysis of determinants and role in sodium retention. Am. J. Nephrol. 11, 441–446 (1991).

    CAS  PubMed  Google Scholar 

  113. Butler, J. et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2, 950–958 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Verbrugge, F. H. et al. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur. J. Heart Fail. 21, 1415–1422 (2019).

    CAS  PubMed  Google Scholar 

  115. Wongboonsin, J. et al. Acetazolamide therapy in patients with heart failure: a meta-analysis. J. Clin. Med. 8, E349 (2019).

    PubMed  Google Scholar 

  116. Mullens, W. et al. Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur. J. Heart Fail. 20, 1591–1600 (2018).

    CAS  PubMed  Google Scholar 

  117. Shoaf, S. E., Bricmont, P. & Mallikaarjun, S. Pharmacokinetics and pharmacodynamics of oral tolvaptan in patients with varying degrees of renal function. Kidney Int. 85, 953–961 (2014).

    CAS  PubMed  Google Scholar 

  118. Felker, G. M. et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J. Am. Coll. Cardiol. 69, 1399–1406 (2017).

    CAS  PubMed  Google Scholar 

  119. Cavalcante, J. L., Khan, S. & Gheorghiade, M. EVEREST study: efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan. Expert. Rev. Cardiovasc. Ther. 6, 1331–1338 (2008).

    CAS  PubMed  Google Scholar 

  120. Konstam, M. A. et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J. Am. Coll. Cardiol. 69, 1409–1419 (2017).

    CAS  PubMed  Google Scholar 

  121. Matsue, Y. et al. Early treatment with tolvaptan improves diuretic response in acute heart failure with renal dysfunction. Clin. Res. Cardiol. 106, 802–812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    CAS  PubMed  Google Scholar 

  123. Lytvyn, Y., Bjornstad, P., Udell, J. A., Lovshin, J. A. & Cherney, D. Z. I. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136, 1643–1658 (2017).

    CAS  PubMed  Google Scholar 

  124. Hallow, K. M., Helmlinger, G., Greasley, P. J., McMurray, J. J. V. & Boulton, D. W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 20, 479–487 (2018).

    CAS  PubMed  Google Scholar 

  125. Paterna, S. et al. Hypertonic saline in conjunction with high-dose furosemide improves dose–response curves in worsening refractory congestive heart failure. Adv. Ther. 32, 971–982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wan, Y. et al. Impact of compound hypertonic saline solution on decompensated heart failure. Int. Heart J. 58, 601–607 (2017).

    PubMed  Google Scholar 

  127. Gandhi, S., Mosleh, W. & Myers, R. B. H. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: a systematic review and meta-analysis. Int. J. Cardiol. 173, 139–145 (2014).

    PubMed  Google Scholar 

  128. Executive Committee. The diagnosis and treatment of peripheral lymphedema: 2016 Consensus Document of the International Society of Lymphology. Lymphology 49, 170–184 (2016).

    Google Scholar 

  129. Leduc, O. et al. Impact of manual lymphatic drainage on hemodynamic parameters in patients with heart failure and lower limb edema. Lymphology 44, 13–20 (2011).

    CAS  PubMed  Google Scholar 

  130. Wilputte, F. et al. Hemodynamic response to multilayered bandages dressed on a lower limb of patients with heart failure. Eur. J. Lymphol. Relat. Probl. 15, 1–4 (2005).

    Google Scholar 

  131. Tomoyasu, M. et al. Effect of phosphodiesterase III inhibitor (Olprinone) on thoracic duct lymph flow in anesthetized sheep with experimentally induced heart failure by endothelin-1. Lymphology 35, 144–152 (2002).

    CAS  PubMed  Google Scholar 

  132. Fudim, M. et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur. Heart J. 39, 4255–4256 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Costanzo, M. R. et al. Extracorporeal ultrafiltration for fluid overload in heart failure current status and prospects for further research. J. Am. Coll. Cardiol. 69, 2428–2445 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03901729 (2020).

  135. Ambrosy, A. P. et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur. Heart J. 34, 835–843 (2013).

    PubMed  Google Scholar 

  136. Damman, K. et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur. J. Heart Fail. 22, 713–722 (2020).

    CAS  PubMed  Google Scholar 

  137. Cooper, L. B. et al. The burden of congestion in patients hospitalized with acute decompensated heart failure. Am. J. Cardiol. 124, 545–553 (2019).

    PubMed  Google Scholar 

  138. Masson, R. et al. A novel in-hospital congestion score to risk stratify patients admitted for worsening heart failure (from ASCEND-HF). J. Cardiovasc. Transl. Res. https://doi.org/10.1007/s12265-020-09954-x (2020).

    Article  PubMed  Google Scholar 

  139. Lala, A. et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardiorenal rescue study in acute decompensated heart failure (CARESS-HF). Circ. Heart Fail. 8, 741–748 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Ng, T. M. H. et al. Comparison of bumetanide- and metolazone-based diuretic regimens to furosemide in acute heart failure. J. Cardiovasc. Pharmacol. Ther. 18, 345–353 (2013).

    CAS  PubMed  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01647932 (2019).

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03574857 (2018).

  143. Ferreira, J. P. et al. Mineralocorticoid receptor antagonism in acutely decompensated chronic heart failure. Eur. J. Intern. Med. 25, 67–72 (2014).

    CAS  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02585843 (2019).

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03057951 (2020).

  146. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03057977 (2020).

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03226457 (2019).

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04080518 (2020).

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03128528 (2020).

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03416270 (2018).

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04049045 (2019).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03030222 (2020).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04157751 (2020).

  154. Kataoka, H. Acetazolamide as a potent chloride-regaining diuretic: short- and long-term effects, and its pharmacologic role under the ‘chloride theory’ for heart failure pathophysiology. Heart Vessel. 34, 1952–1960 (2019).

    Google Scholar 

  155. Imiela, T. & Budaj, A. Acetazolamide as add-on diuretic therapy in exacerbations of chronic heart failure: a pilot study. Clin. Drug Investig. 37, 1175–1181 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03505788 (2019).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03720288 (2018).

  158. Matsue, Y. et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J. Card. Fail. 22, 423–432 (2016).

    CAS  PubMed  Google Scholar 

  159. Nijst, P. et al. The pathophysiological role of interstitial sodium in heart failure. J. Am. Coll. Cardiol. 65, 378–388 (2015).

    CAS  PubMed  Google Scholar 

  160. Heer, M. et al. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid–base balance differently. Br. J. Nutr. 101, 1286–1294 (2009).

    CAS  PubMed  Google Scholar 

  161. Wolff, J. J., Laremore, T. N., Busch, A. M., Linhardt, R. J. & Amster, I. J. Influence of charge state and sodium cationization on the electron detachment dissociation and infrared multiphoton dissociation of glycosaminoglycan oligosaccharides. J. Am. Soc. Mass. Spectrom. 19, 790–798 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.M.B. researched data for the article. E.M.B., J.M.t.M., K.D., S.G., F.Z. and A.A.V. discussed the content of the article. E.M.B. wrote the manuscript, and all the other authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Adriaan A. Voors.

Ethics declarations

Competing interests

W.D. reports full-time employment at Bayer. F.G. receives advisor fees from Abbott, Bayer, Carmat, Impulse Dynamics, Novartis and Pfizer and speaker fees from AstraZeneca, Boehringer Ingelheim and Orion Pharma. S.G. has received consultancy fees and/or research grants from Abbott Laboratories, Bayer and Otsuka Pharmaceuticals. J.E.U. reports research funding for trial activities from Bayer. A.A.V. has received consultancy fees and/or research grants from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Cytokinetics, Myokardia, Novartis and Roche Diagnostics. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks R. Mentz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boorsma, E.M., ter Maaten, J.M., Damman, K. et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol 17, 641–655 (2020). https://doi.org/10.1038/s41569-020-0379-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0379-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing