Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The journey from melanocytes to melanoma

Subjects

Abstract

Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Melanocyte lineage development.
Fig. 2: Melanogenesis signalling pathway.
Fig. 3: Melanocyte stem cells as the melanoma cell of origin.
Fig. 4: BRAF and MEK inhibitor drug-tolerant melanoma populations display heterogeneity in differentiation state and MAPK signalling dependence.

Similar content being viewed by others

Data availability

The data that support Fig. 1b are available in cBioPortal.

References

  1. Ferlay, J. et al. Cancer statistics for the year 2020: an overview. Int. J. Cancer 149, 778–789 (2021).

    Article  CAS  Google Scholar 

  2. Suppa, M. et al. Association of sunbed use with skin cancer risk factors in Europe: an investigation within the Euromelanoma skin cancer prevention campaign. J. Eur. Acad. Dermatol. Venereol. 33, 76–88 (2019).

    Article  PubMed  Google Scholar 

  3. Raimondi, S., Suppa, M. & Gandini, S. Melanoma epidemiology and sun exposure. Acta Derm. Venereologica 100, adv00136 (2020).

    Article  CAS  Google Scholar 

  4. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  5. Berk-Krauss, J., Stein, J. A., Weber, J., Polsky, D. & Geller, A. C. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986–2016. Am. J. Public. Health 110, 731–733 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferlay, J. et al. Global Cancer Observatory: Cancer Tomorrow (International Agency for Research on Cancer, 2021).

  7. National Cancer Institute. Melanoma of the skin recent trends in SEER relative survival rates. Surveillance, Epidemiology, and End Results Program https://seer.cancer.gov/statfacts/html/melan.html (2004–2018).

  8. Office for National Statistics. Cancer survival by stage at diagnosis for England. Cancer Research UK https://www.cancerresearchuk.org/about-cancer/melanoma/survival (2019).

  9. Köhler, C. et al. Mouse cutaneous melanoma induced by mutant braf arises from expansion and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell 21, 679–693.e6 (2017).

    Article  PubMed  Google Scholar 

  10. Baggiolini, A. et al. Developmental chromatin programs determine oncogenic competence in melanoma. Science 373, eabc1048 (2021). This study defines the term oncogenic competence as a combination of oncogenes, lineage-specific transcription factors and epigenetic regulators, and proposes that a particular combination of these is needed to trigger tumour initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, Q. et al. A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nat. Commun. 10, 1–16 (2019).

    Article  Google Scholar 

  12. Moon, H. et al. Melanocyte stem cell activation and translocation initiate cutaneous melanoma in response to UV exposure. Cell Stem Cell 21, 665–678.e6 (2017). This study compares melanoma mouse models that express BRAFV600E from the Kit and Tyr promoter, and together with Sun et al. (2019) concludes that epidermal melanoma that resemble human disease can emerge from MSCs, when activated during hair follicle growth or UVR-mediated inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373, 1926–1936 (2015).

    Article  PubMed  Google Scholar 

  14. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Viros, A. et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511, 478–482 (2014). This study confirms that UVR accelerates BRAF-V600E-driven melanomagenesis, and identifies TP53 as a UVR target gene that cooperates with BRAF-V600E in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alkallas, R. et al. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. Nat. Cancer 1, 635–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newell, F. et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat. Commun. 10, 3163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trucco, L. D. et al. Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma. Nat. Med. 25, 221–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Johansson, P. et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7, 4624–4631 (2016).

    Article  PubMed  Google Scholar 

  22. Akbani, R. et al. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

    Article  Google Scholar 

  23. Mundra, P. A. et al. Ultraviolet radiation drives mutations in a subset of mucosal melanomas. Nat. Commun. 12, 1–7 (2021).

    Article  Google Scholar 

  24. Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Marie, K. L. et al. Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nat. Commun. 11, 333 (2020). This paper generates a melanoblast transcriptome and highlights melanoblast-specific genes that are reactivated in melanoma and contribute to metastatic competence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaufman, C. K. et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351, aad2197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cunningham, R. L. et al. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun. Biol. 4, 1–15 (2021).

    Article  Google Scholar 

  28. Belote, R. L. et al. Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00740-8 (2021).

    Article  PubMed  Google Scholar 

  29. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39, 1135–1149.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022). This study identifies up to seven different melanoma cell states and proposes an updated model for melanoma growth, where the stem cell-like population at the top of the hierarchy is dynamic and defined by the microenvironment and niche signals, reconciliating previous conflicting studies disputing dynamic phenotype switching and hierarchical cancer stem cell models for melanoma growth.

    Article  CAS  PubMed  Google Scholar 

  31. Zaidi, M. R. et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 469, 548–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hennessey, R. C. et al. Ultraviolet radiation accelerates NRas-mutant melanomagenesis: a cooperative effect blocked by sunscreen. Pigment. Cell Melanoma Res. 30, 477–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Khaliq, M., Manikkam, M., Martinez, E. D. & Fallahi-Sichani, M. Epigenetic modulation reveals differentiation state specificity of oncogene addiction. Nat. Commun. 12, 1–15 (2021). This study identifies three classes of epigenetic inhibitors that target melanoma subpopulations with different levels of differentiation to increase their dependence on MAPK signalling, and therefore their sensitivity to BRAF and MEK inhibitors.

    Article  Google Scholar 

  34. Wouters, J. et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 22, 986–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Adameyko, I. et al. Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139, 397–410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kinsler, V. A. & Larue, L. The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment. Cell Melanoma Res. 31, 95–109 (2018).

    Article  PubMed  Google Scholar 

  37. Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell https://doi.org/10.1016/j.cell.2009.07.049 (2009).

    Article  PubMed  Google Scholar 

  38. Singh, A. P. et al. Pigment cell progenitors in zebrafish remain multipotent through metamorphosis. Dev. Cell 38, 316–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Brombin, A. et al. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Rep. 38, 110234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamaguchi, Y. & Hearing, V. J. Melanocytes and their diseases. Cold Spring Harb. Perspect. Med. 4, a017046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saleem, M. D. Biology of human melanocyte development, Piebaldism, and Waardenburg syndrome. Pediatr. Dermatol. 36, 72–84 (2019).

    Article  PubMed  Google Scholar 

  42. Colombo, S., Berlin, I., Delmas, V. & Larue, L. in Melanins Melanosomes: Biosynthesis, Biogenesis, Physiological, Pathological Functions 21–61 (Wiley, 2011).

  43. Renauld, J. M., Davis, W., Cai, T., Cabrera, C. & Basch, M. L. Transcriptomic analysis and ednrb expression in cochlear intermediate cells reveal developmental differences between inner ear and skin melanocytes. Pigment. Cell Melanoma Res. 34, 585–597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luciani, F. et al. Biological and mathematical modeling of melanocyte development. Development 138, 3943–3954 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. MacKenzie, M. A. F., Jordan, S. A., Budd, P. S. & Jackson, I. J. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev. Biol. 192, 99–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Harris, M. L. et al. A direct link between MITF, innate immunity, and hair graying. PloS Biol. https://doi.org/10.1371/journal.pbio.2003648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sánchez-del-Campo, L. et al. MITF induces escape from innate immunity in melanoma. J. Exp. Clin. Cancer Res. 40, 1–18 (2021).

    Article  Google Scholar 

  50. Holbrook, K. A., Underwood, R. A., Vogel, A. M., Gown, A. M. & Kimball, H. The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat. Embryol. 180, 443–455 (1989).

    Article  CAS  Google Scholar 

  51. Gleason, B. C., Crum, C. P. & Murphy, G. F. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. J. Cutan. Pathol. 35, 615–622 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Herraiz, C. et al. Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol. Endocrinol. 25, 138–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, S., Yu, X. & Dong, C. miR-137 affects melanin synthesis in mouse melanocyte by repressing the expression of c-Kit and Tyrp2 in SCF/c-Kit signaling pathway. Biosci. Biotechnol. Biochem. 80, 2115–2121 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Tabone‐Eglinger, S., Wehrle‐Haller, M., Aebischer, N., Jacquier, M. & Wehrle‐Haller, B. Membrane bound Kit ligand regulates melanocyte adhesion and survival, providing physical interaction with an intraepithelial niche. FASEB J. 26, 3738–3753 (2012).

    Article  PubMed  Google Scholar 

  55. Kasamatsu, S. et al. Production of the soluble form of KIT, s-KIT, abolishes stem cell factor-induced melanogenesis in human melanocytes. J. Invest. Dermatol. 128, 1763–1772 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Morita, R. et al. Tracing the origin of hair follicle stem cells. Nature https://doi.org/10.1038/s41586-021-03638-5 (2021).

    Article  PubMed  Google Scholar 

  57. Baykal, C., Yılmaz, Z., Sun, G. P. & Büyükbabani, N. The spectrum of benign dermal dendritic melanocytic proliferations. J. Eur. Acad. Dermatol. Venereol. 33, 1029–1041 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Ning, W., Muroyama, A., Li, H. & Lechler, T. Differentiated daughter cells regulate stem cell proliferation and fate through intra-tissue tension. Cell Stem Cell 28, 436–452.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Domingues, L. et al. Coupling of melanocyte signaling and mechanics by caveolae is required for human skin pigmentation. Nat. Commun. 11, 2988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cicero, A. L. et al. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 6, 7506 (2015).

    Article  PubMed  Google Scholar 

  61. Tokuo, H., Bhawan, J. & Coluccio, L. M. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci. Rep. 8, 1–19 (2018).

    Article  CAS  Google Scholar 

  62. Hsu, M. Y. et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 156, 1515–1525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laurent-Gengoux, P. et al. Simulation of melanoblast displacements reveals new features of developmental migration. Development 145, dev160200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jia, L., Cheng, L. & Raper, J. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev. Biol. 282, 411–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Bertolotto, C. et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480, 94–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Zuo, Q. et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene 37, 3275–3289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boshuizen, J. et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody–drug conjugate and BRAF/MEK inhibitors. Nat. Med. 24, 203–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Konieczkowski, D. J. et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perotti, V. et al. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 38, 4384–4396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pietrobono, S. et al. ST3GAL1 is a target of the SOX2–GLI1 transcriptional complex and promotes melanoma metastasis through AXL. Nat. Commun. 11, 5865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Robila, V. et al. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes, and is influenced by melanosomes. J. Immunol. 181, 7843–7852 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Zarour, H. M. et al. Melan-A/MART-151–73 represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4+ T cells. Proc. Natl Acad. Sci. USA 97, 400 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uka, R. et al. Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene https://doi.org/10.1038/s41388-020-1267-7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Long, E. et al. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Med. 5, 1022–1030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rambow, F. et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep. 13, 840–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Travnickova, J. et al. Zebrafish MITF-low melanoma subtype models reveal transcriptional subclusters and MITF-independent residual disease. Cancer Res. 79, 5769–5784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Porter, R. M. Mouse models for human hair loss disorders. J. Anat. 202, 125–131 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rabbani, P. et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joost, S. et al. The molecular anatomy of mouse skin during hair growth and rest. Cell Stem Cell 26, 441–457.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Alonso, L. & Fuchs, E. The hair cycle. J. Cell Sci. 119, 391–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takeo, M. et al. EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt signaling. Cell Rep. 15, 1291–1302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, C. Y. et al. NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nature 495, 98–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Glover, J. D. et al. Maintenance of distinct melanocyte populations in the interfollicular epidermis. Pigment. Cell Melanoma Res. 28, 476–480 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Osawa, M. et al. Molecular characterization of melanocyte stem cells in their niche. Development 132, 5589–5599 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Goldstein, N. B. et al. Melanocyte precursors in the hair follicle bulge of repigmented vitiligo skin are controlled by RHO-GTPase, KCTD10, and CTNNB1 signaling. J. Invest. Dermatol. 141, 638–647.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Ortonne, J. P., Schmitt, D. & Thivolet, J. PUVA-induced repigmentation of vitiligo: scanning electron microscopy of hair follicles. J. Invest. Dermatol. 74, 40–42 (1980).

    Article  CAS  PubMed  Google Scholar 

  91. Okamoto, N. et al. A melanocyte–melanoma precursor niche in sweat glands of volar skin. Pigment. Cell Melanoma Res. 27, 1039–1050 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Ikeda, Y. et al. Melanocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS ONE 16, e0256622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chou, W. C. et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat. Med. 19, 924–929 (2013). This study shows how, in response to wounding and UVR, MSCs — through MC1R signalling — prioritize migration to the epidermis and differentiation over self-division and maintenance, to protect the skin cells from further damage.

    Article  CAS  PubMed  Google Scholar 

  94. Yamada, T. et al. Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J. Investig. Dermatol. 133, 2753–2762 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Chaplin, G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. 125, 292–302 (2004).

    Article  PubMed  Google Scholar 

  96. Hurbain, I. et al. Melanosome distribution in keratinocytes in different skin types: melanosome clusters are not degradative organelles. J. Investig. Dermatol. 138, 647–656 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Hoath, S. B. & Leahy, D. G. The organization of human epidermis: functional epidermal units and phi proportionality. J. Invest. Dermatol. 121, 1440–1446 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Boissy, R. E. Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. Suppl. 12, 5–12 (2003).

    Article  Google Scholar 

  99. Wu, X. & Hammer, J. A. Melanosome transfer: it is best to give and receive. Curr. Opin. Cell Biol. https://doi.org/10.1016/j.ceb.2014.02.003 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Benito-Martínez, S., Salavessa, L., Raposo, G., Marks, M. S. & Delevoye, C. Melanin transfer and fate within keratinocytes in human skin pigmentation. Integr. Comp. Biol. 61, 1546–1555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hall, M. J. et al. Reconstructed human pigmented skin/epidermis models achieve epidermal pigmentation through melanocore transfer. Pigment. Cell Melanoma Res. https://doi.org/10.1111/PCMR.13039 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moreiras, H. et al. Melanocore uptake by keratinocytes occurs through phagocytosis and involves protease‐activated receptor‐2 internalization. Traffic https://doi.org/10.1111/TRA.12843 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Byers, H. R., Maheshwary, S., Amodeo, D. M. & Dykstra, S. G. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J. Investig. Dermatol. 121, 813–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Corre, S. et al. UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J. Biol. Chem. 279, 51226–51233 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Visconti, A. et al. Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure. Nat. Commun. 9, 1684 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nguyen, N. T. & Fisher, D. E. MITF and UV responses in skin: from pigmentation to addiction. Pigment. Cell Melanoma Res. 32, 224–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Cui, R. et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853–864 (2007). This seminal paper describes the molecular processes that drive suntanning in response to UVR. The process is orchestrated by p53 activation in keratinocytes, which secrete POMC/MSH to activate MC1R in melanocytes. The paper provides key insight into the molecular mechanisms of theUVR sensor’.

    Article  CAS  PubMed  Google Scholar 

  108. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. D’Mello, S. A. N., Finlay, G. J., Baguley, B. C. & Askarian-Amiri, M. E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1–18 (2016).

    Article  Google Scholar 

  110. Li, X. et al. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discov. 7, 111 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Seoane, M. et al. Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene 38, 3616–3635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lozano, R. C., Maloberti, P., Mendez, C. F., Paz, C. & Podestá, E. J. ACTH regulation of mitochondrial acyl-CoA thioesterase activity in Y1 adrenocortical tumour cells. Endocr. Res. 28, 331–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Ostojić, J. et al. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep. 35, 109136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dumaz, N. et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Estrada, C. et al. MITF activity is regulated by a direct interaction with RAF proteins in melanoma cells. Commun. Biol. 5, 1–13 (2022).

    Article  Google Scholar 

  116. Landi, M. T. et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 52, 1–11 (2020).

    Article  Google Scholar 

  117. Olsen, C. M., Carroll, H. J. & Whiteman, D. C. Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling. Int. J. Cancer 127, 2430–2445 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, S. et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature 549, 399–403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mitra, D. et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491, 449–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Robles-Espinoza, C. D. et al. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun. 7, 1–7 (2016).

    Article  Google Scholar 

  121. Neitzke-Montinelli, V., da Silva Figueiredo Celestino Gomes, P., Pascutti, P. G., Moura-Neto, R. S. & Silva, R. Genetic diversity of the melanocortin-1 receptor in an admixed population of Rio de Janeiro: structural and functional impacts of Cys35Tyr variant. PLoS ONE 17, e0267286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smit, A. K. et al. MC1R variants and associations with pigmentation characteristics and genetic ancestry in a Hispanic, predominately Puerto Rican, population. Sci. Rep. 10, 7303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pasquali, E. et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int. J. Cancer 136, 618–631 (2015).

    CAS  PubMed  Google Scholar 

  124. Tagliabue, E. et al. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled analysis from the M-SKIP project. Cancer Manag. Res. 10, 1143–1154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Harding, R. M. et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66, 1351–1361 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Leclerc, J., Ballotti, R. & Bertolotto, C. Pathways from senescence to melanoma: focus on MITF sumoylation. Oncogene 36, 6659–6667 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat. Rev. Cancer 16, 345–358 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Bevona, C. et al. Cutaneous melanomas associated with nevi. Arch. Dermatol. 139,1620–1624 (2003).

    Article  PubMed  Google Scholar 

  129. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Prager, B. C., Xie, Q., Bao, S. & Rich, J. N. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24, 41–53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Patton, E. E. et al. Melanoma models for the next generation of therapies. Cancer Cell 39, 610–631 (2021). This review covers the latest melanoma models used for research, including genetically engineered mouse models, PDX models, zebrafish, cell lines and organoids, and highlights the main challenges to study melanoma using these models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pedersen, M., Küsters-vandevelde, H. V. N., Viros, A. & Patricia, J. T. A. Primary melanoma of the CNS in children is driven by congenital expression of oncogenic NRAS in melanocytes. Cancer Discov. 3, 458–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Dhomen, N. et al. Inducible expression of V600EBraf using tyrosinase-driven Cre recombinase results in embryonic lethality. Pigment. Cell Melanoma Res. 23, 112–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Laurette, P. et al. Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma. Cell Death Differ. 27, 29–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rajakulendran, T., Sahmi, M., Lefrançois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Karoulia, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer 17, 676–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Barbosa, R., Acevedo, L. A. & Marmorstein, R. The MEK/ERK network as a therapeutic target in human cancer. Mol. Cancer Res. 19, 361–374 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Wellbrock, C. & Arozarena, I. The complexity of the ERK/MAP-kinase pathway and the treatment of melanoma skin cancer. Front. Cell Dev. Biol. 4, 33 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 3, 339–349 (2013).

    Article  Google Scholar 

  142. Kato, S., Lippman, S. M., Flaherty, K. T. & Kurzrock, R. The conundrum of genetic ‘drivers’ in benign conditions. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djw036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Kumar, R. et al. Growth suppression by dual BRAFV600E and NRASQ61 oncogene expression is mediated by SPRY4 in melanoma. Oncogene 38, 3504–3520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Murphy, B. M. et al. Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation. Nat. Commun. 13, 3153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  PubMed  Google Scholar 

  151. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature https://doi.org/10.1038/nature08902 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. McNeal, A. S. et al. CDKN2B loss promotes progression from benign melanocytic nevus to melanoma. Cancer Discov. 5, 1072–1085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Yu, Y. et al. Targeting the senescence-overriding cooperative activity of structurally unrelated H3K9 demethylases in melanoma. Cancer Cell 33, 322–336.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ruiz-Vega, R. et al. Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes. eLife 9, e61026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zeng, H. et al. Bi-allelic loss of CDKN2A initiates melanoma invasion via BRN2 activation. Cancer Cell 34, 56–68.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Oaxaca, G., Billings, S. D. & Ko, J. S. p16 range of expression in dermal predominant benign epithelioid and spindled nevi and melanoma. J. Cutan. Pathol. 47, 815–823 (2020).

    Article  PubMed  Google Scholar 

  160. McNeal, A. S. et al. BRAFV600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 10, 1–26 (2021).

    Article  Google Scholar 

  161. Rudolph, P., Tronnier, M., Menzel, R., Möller, M. & Parwaresch, R. Enhanced expression of Ki-67, topoisomerase IIα, PCNA, p53 and p21WAF1/Cip1 reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. Hum. Pathol. 29, 1480–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. King, R. et al. Recurrent nevus phenomenon: a clinicopathologic study of 357 cases and histologic comparison with melanoma with regression. Mod. Pathol. 22, 611–617 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Richert, S., Bloom, E. J., Flynn, K. & Seraly, M. P. Widespread eruptive dermal and atypical melanocytic nevi in association with chronic myelocytic leukemia: case report and review of the literature. J. Am. Acad. Dermatol. 35, 326–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Torres, R. et al. microRNA ratios distinguish melanomas from nevi. J. Investig. Dermatol. 140, 164–173.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hodis, E. et al. Stepwise-edited, human melanoma models reveal mutations’ effect on tumor and microenvironment. Science 376, eabi8175 (2022). This work uses genome editing to generate cell models of melanoma progression, starting from primary human melanocytes and adding common mutations in a stepwise manner, to establish links between melanoma genotypes and phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Haigis, K. M., Cichowski, K. & Elledge, S. J. Tissue-specificity in cancer: the rule, not the exception. Science 363, 1150–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Liang, W. S. et al. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. Genome Res. 27, 524–532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Johansson, P. A. et al. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat. Commun. 11, 1–8 (2020).

    Article  Google Scholar 

  172. van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009).

    Article  PubMed  Google Scholar 

  173. van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vergara, I. A. et al. Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nat. Commun. 12, 1434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weiss, J. M. et al. Anatomic position determines oncogenic specificity in melanoma. Nature 604, 354–361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Valluet, A. et al. B-Raf and C-Raf are required for melanocyte stem cell self-maintenance. Cell Rep. 2, 774–780 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Tang, J. et al. The genomic landscapes of individual melanocytes from human skin. Nature 586, 600–605 (2020). This paper reports an example of oncogene competence in acral melanoma that are driven by the cooperation between a positional identity gene programme and an oncogene to restrict transformation and melanoma initiation to a specific anatomical location, the limbs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sanna, A. et al. Tumor genetic heterogeneity analysis of chronic sun-damaged melanoma. Pigment. Cell Melanoma Res. 33, 480–489 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. White, A. C. et al. Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nat. Cell Biol. 16, 99–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Yuan, T. A. et al. Race-, age-, and anatomic site-specific gender differences in cutaneous melanoma suggest differential mechanisms of early-and late-onset melanoma. Int. J. EnvIRON. Res. Public Health https://doi.org/10.3390/ijerph16060908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Yuan, X., Larsson, C. & Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene https://doi.org/10.1038/s41388-019-0872-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kim, Y. J., Kim, K., Lee, K. H., Kim, J. & Jung, W. Immune expression signatures as candidate prognostic biomarkers of age and gender survival differences in cutaneous melanoma. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  186. Foresta, C., Ferlin, A. & Moro, E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum. Mol. Genet. 9, 1161–1169 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Hoek, K. S. et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment. Cell Res. 19, 290–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Hoek, K. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Verfaillie, A. et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 6, 6683 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). This study presents the first single-cell profiling of human melanomas, and the data confirm melanoma heterogeneity by identifying different populations within the tumour and its microenvironment, including highly proliferative and dormant drug-resistant cell populations, but also diverse immune cells that interact with the cancer cells through different mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ennen, M. et al. MITF-high and MITF-low cells and a novel subpopulation expressing genes of both cell states contribute to intra- and intertumoral heterogeneity of primary melanoma. Clin. Cancer Res. 23, 7097–7107 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Sensi, M. et al. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J. Investig. Dermatol. 131, 2448–2457 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Chapman, A. et al. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hoek, K. S. et al. Novel MITF targets identified using a two-step DNA microarray strategy. Pigment. Cell Melanoma Res. 21, 665–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Haq, R. et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl Acad. Sci. USA 110, 4321–4326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Falletta, P. et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim, I. S. et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat. Commun. 8, 1–11 (2017).

    Google Scholar 

  200. Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer 19, 377–391 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Golan, T. et al. Adipocytes sensitize melanoma cells to environmental TGF-β cues by repressing the expression of miR-211. Sci. Signal. 12, eaav6847 (2019).

    Article  PubMed  Google Scholar 

  203. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Swoboda, A. et al. STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene 40, 1091–1105 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Miskolczi, Z. et al. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene 37, 3166–3182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Carreira, S. et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. https://doi.org/10.1101/gad.406406 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sáez-Ayala, M. et al. Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell 24, 105–119 (2013).

    Article  PubMed  Google Scholar 

  209. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Quintana, E. et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Campbell, N. R. et al. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev. Cell 56, 2808–2825.e10 (2021). This work identifies melanoma cell populations from proliferative and invasive states that cooperate during metastasis to form structured clusters that are crucial for cell dissemination and tumour heterogeneity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Rowling, E. J. et al. Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment. Cell Melanoma Res. 33, 695–708 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Aya-Bonilla, C. A. et al. Detection and prognostic role of heterogeneous populations of melanoma circulating tumour cells. Br. J. Cancer 122, 1059–1067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Carlino, M. S., Larkin, J. & Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Kalaora, S., Nagler, A., Wargo, J. A. & Samuels, Y. Mechanisms of immune activation and regulation: lessons from melanoma. Nat. Rev. Cancer 22, 195–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Valpione, S. et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).In this article, the CDR3 regions of T cell receptors are sequenced in peripheral T cells and cell-free serum DNA as an approach to monitor patient’s response to immunotherapy through minimal invasive liquid biopsies. The results allow patient responses to be predicted following 3 weeks of treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Haas, L. et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Cancer 2, 693–708 (2021).This manuscript describes a mechanism for resistance to immunotherapy, after acquired resistance to targeted therapy, based on a decrease in mature dendritic cells in the microenvironment due to the reactivation of MAPK signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Galvani, E. et al. Stroma remodeling and reduced cell division define durable response to PD-1 blockade in melanoma. Nat. Commun. 11, 853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fukumoto, T. et al. ARID2 deficiency correlates with the response to immune checkpoint blockade in melanoma. J. Investig. Dermatol. https://doi.org/10.1016/j.jid.2020.11.026 (2021).

    Article  PubMed  Google Scholar 

  226. Robert, C. et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N. Engl. J. Med. 381, 626–636 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Ohanna, M. et al. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev. 32, 448–461 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Li, S. et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun. 10, 1693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Schäfer, A. et al. Inhibition of endothelin-B receptor signaling synergizes with MAPK pathway inhibitors in BRAF mutated melanoma. Oncogene 40, 1659–1673 (2021).

    Article  PubMed  Google Scholar 

  230. Umkehrer, C. et al. Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. Nat. Biotechnol. 39, 174–178 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fallahi‐Sichani, M. et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de‐differentiated state. Mol. Syst. Biol. 13, 905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Liu, J. et al. Neural crest-like stem cell transcriptome analysis identifies LPAR1 in melanoma progression and therapy resistance. Cancer Res. 81, 5230–5241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Spender, L. C. et al. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget 7, 81995–82012 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Fontanals-Cirera, B. et al. Harnessing BET inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene. Mol. Cell 68, 731–744.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mason, R. et al. Combined ipilimumab and nivolumab first-line and after BRAF-targeted therapy in advanced melanoma. Pigment. Cell Melanoma Res. 33, 358–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Bertolotto, C. et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827–835 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Price, E. R. et al. α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273, 33042–33047 (1998).

    Article  CAS  PubMed  Google Scholar 

  239. Rousseau, K. et al. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 21, 1844–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Kos, R., Reedy, M. V., Johnson, R. L. & Erickson, C. A. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, 1467–1479 (2001).

    Article  CAS  PubMed  Google Scholar 

  241. Nitzan, E., Pfaltzgraff, E. R., Labosky, P. A. & Kalcheim, C. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc. Natl Acad. Sci. USA 110, 12709–12714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dooley, C. M., Mongera, A., Walderich, B. & Nüsslein-Volhard, C. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish. Development 140, 1003–1013 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  244. Zhang, Y. et al. Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135, 2161–2172 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science https://doi.org/10.1126/science.1092436 (2004).

    Article  PubMed  Google Scholar 

  246. Nishimura, E. K. et al. Key roles for transforming growth factor β in melanocyte stem cell maintenance. Cell Stem Cell 6, 130–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Infarinato, N. R. et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev. 34, 1713–1734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK Manchester Institute (C5759/A27412) and by the Cancer Research UK Grand Challenge and the Mark Foundation to the SPECIFICANCER team.

Author information

Authors and Affiliations

Authors

Contributions

P.P.C. and R.M. researched data for the article. V.P. contributed substantially to discussion of the content. P.P.C. and R.M. wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Richard Marais.

Ethics declarations

Competing interest

As an employee of CRUK MI, R.M. may benefit financially from research projects that are commercialized, and he is an adviser for Pfizer. P.P.C. and V.P. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks David Fisher, Jean-Christophe Marine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

TCGA: https://www.cancer.gov/tcga

Glossary

Acral melanomas

Skin melanomas that form in non-glabrous skin such as the palms, soles or under fingernails or toenails and are the predominant form of melanoma in highly pigmented ethnicities.

Bulb

The lowest part of the hair follicle where mature melanocytes can be found providing pigment to the growing hair shaft.

Bulge

A stem cell niche located at the uppermost part of the hair follicle.

Conjunctival melanomas

Mucosal melanomas of the eye.

Dermal papilla

A cluster of fibroblasts formed at the uppermost part of the dermis which extends between the dermis and the epidermis.

Melanin

A pigment secreted by melanocytes whose primary roles are to protect the skin from the damaging effects of ultraviolet radiation (UVR) and provide hair colour and skin tone.

Melanoblasts

Neural crest-derived melanocyte precursors.

Melanogenesis

The process of melanin production occurring in the melanocytes.

Melanosomes

Specialized lysosome-like vesicles in melanocytes responsible for melanin synthesis and storage.

Metastatic organotropism

A non-random distribution of distant metastasis to certain organs regulated by multiple factors, including the primary tumour subtype, host tissue immune microenvironment or patient age.

Minimal residual disease

A small population of often undetectable cancer cells that remain viable during and after drug therapy and are responsible for disease relapse.

Naevi

Common moles caused by the benign and localized proliferation of melanocytes in the skin.

Non-glabrous skin

Skin that does not contain hair follicles, such as the palms and soles.

Nucleotide excision repair

A DNA repair mechanism that involves, first, the excision of a short single-stranded DNA section containing a fault, and second the synthesis and ligation of a new corrected short complementary sequence using as a template the remaining undamaged strand.

Oncogenic competence

The phenomenon explaining why a given oncogene can only trigger transformation in certain cellular contexts.

Oncogenic dedifferentiation

The process by which oncogene activation leads to transcriptional and epigenic alterations activating a ‘stemness’ state in the tumour cells crucial for tumour progression and invasion.

Phototype

The Fitzpatrick skin phototype is a commonly used classification system, including six skin types to reflect the amount of melanin in the skin and a person’s response to ultraviolet radiation (UVR).

Placode

Thickening of the ectoderm destined to become the hair follicle during development.

Population-attributable fraction

A statistical measure used in public health and epidemiologic studies, defined as the fraction of all cases of a particular disease or adverse event in a population that is attributable to a specific exposure.

Positional identity

The unique transcriptional programme, involving fate-determining homeodomain transcription factors, that applies in a particular anatomic site.

Radial growth phase

A growth phase characteristic of cutaneous melanoma in which an irregular horizontal plaque is formed that may invade the dermis but does not form a nodule.

Secondary hair germ

An area located adjacent to the hair follicle bulge that also hosts stem cells for hair follicle regeneration, but unlike the stem cells residing in the bulge, these cells undergo apoptosis during catagen.

Tanning response

Repeated ultraviolet radiation (UVR) exposure increases the number of dendrites on melanocytes, the transfer of melanosomes to the keratinocytes and the distribution of melanosomes in the keratinocytes, all to increase skin protection and increase UVR shielding to protect the cells from damage, and it manifests by increased skin pigmentation.

Tetradecanoylphorbol acetate

(TPA). A diester phorbol that activates protein kinase C (PKC) to drive melanocyte proliferation in vitro, but is also a potent tumour promoter in mouse models of non-melanoma skin cancer.

Unfolded protein response

A cellular response to control protein homeostasis that is activated in response to endoplasmic reticulum stress, which is triggered by the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum lumen. It reduces protein load to preserve cell viability and function, but when chronically activated it triggers apoptosis.

UVR signature mutations

Specific mutations in DNA caused by ultraviolet radiation (UVR), and predominated by C > T transitions at dipyrimidine sites.

Vertical growth phase

A growth phase characteristic of cutaneous melanoma that describes the invasive vertical growth deeper into the underlying tissue, which is associated with increased risk of metastasis.

Vitiligo

A long-term skin condition with an autoimmune origin characterized by discoloured and pale patches in different areas of the skin due to the loss of melanocytes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centeno, P.P., Pavet, V. & Marais, R. The journey from melanocytes to melanoma. Nat Rev Cancer 23, 372–390 (2023). https://doi.org/10.1038/s41568-023-00565-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00565-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing