Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precision spectroscopy and laser-cooling scheme of a radium-containing molecule

Abstract

Molecules containing heavy radioactive nuclei are predicted to be extremely sensitive to violations of the fundamental symmetries of nature. The nuclear octupole deformation of certain radium isotopes massively boosts the sensitivity of radium monofluoride molecules to symmetry-violating nuclear properties. Moreover, these molecules are predicted to be laser coolable. Here we report measurements of the rovibronic structure of radium monofluoride molecules, which allow the determination of their laser cooling scheme. We demonstrate an improvement in resolution of more than two orders of magnitude compared to the state of the art. Our developments allowed measurements of minuscule amounts of hot molecules, with only a few hundred per second produced in a particular rotational state. The combined precision and sensitivity achieved in this work offer opportunities for studies of radioactive molecules of interest in fundamental physics, chemistry and astrophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the experimental setup.
Fig. 2: Example of measured spectra for the \({0}^{{\prime} }\leftarrow {0}^{{\prime\prime} }\) transitions.
Fig. 3: Proposed laser cooling scheme for RaF.
Fig. 4: Measured spectra using second-step J-selectivity.

Similar content being viewed by others

Data availability

The processed spectra used for the analysis and supporting the findings of these studies are provided in ref. 57. The complete raw data is available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The Python script used for fitting individual peaks as well as a PGOPHER file containing a fitted spectra for the 0′ ← 0″ and 1′ ← 1″ rovibronic transitions are provided in ref. 57. The code used for processing the raw data is available from the corresponding authors upon request.

References

  1. Tanabashi, M. et al. Review of particle physics: particle data groups. Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  2. Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. ACME collaboration. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    Article  Google Scholar 

  4. Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    Article  PubMed  ADS  Google Scholar 

  5. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  6. Altuntaş, E. et al. Demonstration of a sensitive method to measure nuclear-spin-dependent parity violation. Phys. Rev. Lett. 120, 142501 (2018).

    Article  PubMed  ADS  Google Scholar 

  7. ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  Google Scholar 

  8. Arrowsmith-Kron, G. et al. Opportunities for fundamental physics research with radioactive molecules. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.02165 (2023).

  9. Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Gaffney, L. P. et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497, 199–204 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Auerbach, N., Flambaum, V. V. & Spevak, V. Collective T-and P-odd electromagnetic moments in nuclei with octupole deformations. Phys. Rev. Lett. 76, 4316–4319 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Flambaum, V. V. Electric dipole moments of actinide atoms and RaO molecule. Phys. Rev. A 77, 024501 (2008).

    Article  ADS  Google Scholar 

  13. Isaev, T. A., Hoekstra, S. & Berger, R. Laser-cooled RaF as a promising candidate to measure molecular parity violation. Phys. Rev. A 82, 052521 (2010).

    Article  ADS  Google Scholar 

  14. Kudashov, A. D. et al. Ab initio study of radium monofluoride (RaF) as a candidate to search for parity-and time-and-parity–violation effects. Phys. Rev. A 90, 052513 (2014).

    Article  ADS  Google Scholar 

  15. Sasmal, S., Pathak, H., Nayak, M. K., Vaval, N. & Pal, S. Relativistic coupled-cluster study of RaF as a candidate for the parity-and time-reversal-violating interaction. Phys. Rev. A 93, 062506 (2016).

    Article  ADS  Google Scholar 

  16. Gaul, K., Marquardt, S., Isaev, T. & Berger, R. Systematic study of relativistic and chemical enhancements of P, T-odd effects in polar diatomic radicals. Phys. Rev. A 99, 032509 (2019).

    Article  CAS  ADS  Google Scholar 

  17. Garcia Ruiz, R. F. et al. Spectroscopy of short-lived radioactive molecules. Nature 581, 396–400 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Isaev, T.A. & Berger, R. Lasercooled radium monofluoride: a molecular all-in-one probe for new physics. Preprint at arXiv https://doi.org/10.48550/arXiv.1302.5682 (2013).

  19. Udrescu, S. M. et al. Isotope shifts of radium monofluoride molecules. Phys. Rev. Lett. 127, 033001 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  CAS  Google Scholar 

  23. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  PubMed  ADS  Google Scholar 

  24. Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    Article  CAS  Google Scholar 

  25. Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Jorapur, V., Langin, T.K., Wang, Q., Zheng, G. & DeMille, D. High density loading and collisional loss of laser cooled molecules in an optical trap. Preprint at arXiv https://doi.org/10.48550/arXiv.2307.05347 (2023).

  28. Catherall, R. et al. The ISOLDE facility. J. Phys. G 44, 094002 (2017).

    Article  ADS  Google Scholar 

  29. Campbell, P., Moore, I. D. & Pearson, M. R. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127–180 (2016).

    Article  CAS  ADS  Google Scholar 

  30. Yang, X. F., Wang, S. J., Wilkins, S. G. & Garcia Ruiz, R. F. Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2022).

    Article  Google Scholar 

  31. Athanasakis-Kaklamanakis, M. et al. Pinning down electron correlations in RaF via spectroscopy of excited states. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.14862 (2023).

  32. Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221–242 (2017).

    Article  CAS  ADS  Google Scholar 

  33. Zaitsevskii, A. et al. Accurate ab initio calculations of RaF electronic structure appeal to more laser-spectroscopical measurements. J. Chem. Phys. 156, 044306 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Petrov, A. N. & Skripnikov, L. V. Energy levels of radium monofluoride RaF in external electric and magnetic fields to search for P-and T, P-violation effects. Phys. Rev. A 102, 062801 (2020).

    Article  CAS  ADS  Google Scholar 

  35. Hutzler, N. R., Lu, H. I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Aggarwal, P. et al. Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D, 72, 197 (2018).

  37. Kamiński, T. et al. Astronomical detection of radioactive molecule 26AlF in the remnant of an ancient explosion. Nat. Astron. 2, 778–783 (2018).

    Article  ADS  Google Scholar 

  38. Chubb, K. L., Min, M., Kawashima, Y., Helling, C. & Waldmann, I. Aluminium oxide in the atmosphere of hot Jupiter WASP-43b. Astron. Astrophys. 639, A3 (2020).

    Article  CAS  ADS  Google Scholar 

  39. Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M. & Herwig, F. Evidence for radiogenic sulfur-32 in type AB presolar silicon carbide grains? Astrophys. J. Lett. 776, L29 (2013).

    Article  ADS  Google Scholar 

  40. Cairnie, M., Forrey, R. C., Babb, J. F., Stancil, P. C. & McLaughlin, B. M. Rate constants for the formation of SiO by radiative association. Mon. Notices Royal Astron. Soc. 471, 2481–2490 (2017).

    Article  CAS  ADS  Google Scholar 

  41. Lacy, J. H., Richter, M. J., Greathouse, T. K., Jaffe, D. T. & Zhu, Q. Texes: a sensitive high-resolution grating spectrograph for the mid-infrared. Publ. Astron. Soc. Pac. 114, 153–168 (2002).

    Article  ADS  Google Scholar 

  42. Fomalont, E. B. et al. The 2014 ALMA long baseline campaign: an overview. Astrophys. J. Lett. 808, L1 (2015).

    Article  ADS  Google Scholar 

  43. Isaev, T. A., Zaitsevskii, A. V. & Eliav, E. Laser-coolable polyatomic molecules with heavy nuclei. J. Phys. B 50, 225101 (2017).

    Article  ADS  Google Scholar 

  44. Fazil, N. M., Prasannaa, V. S., Latha, K. V. P., Abe, M. & Das, B. P. RaH as a potential candidate for electron electric-dipole-moment searches. Phys. Rev. A 99, 052502 (2019).

    Article  CAS  ADS  Google Scholar 

  45. Yu, P. & Hutzler, N. R. Probing fundamental symmetries of deformed nuclei in symmetric top molecules. Phys. Rev. Lett. 126, 023003 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Fan, M. et al. Optical mass spectrometry of cold RaOH+ and RaOCH3+. Phys. Rev. Lett. 126, 023002 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Zülch, C., Gaul, K., Giesen, S. M., Ruiz, R. F. G. & Berger, R. Cool molecular highly charged ions for precision tests of fundamental physics. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.10333 (2022).

  48. Oleynichenko, A. V., Skripnikov, L. V., Zaitsevskii, A. V. & Flambaum, V. V. Laser-coolable AcOH+ ion for CP-violation searches. Phys. Rev. A 105, 022825 (2022).

    Article  CAS  ADS  Google Scholar 

  49. Flanagan, K. T. et al. Collinear resonance ionization spectroscopy of neutron-deficient francium isotopes. Phys. Rev. Lett. 111, 212501 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. De Groote, R. P. et al. Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy. Phys. Rev. Lett. 115, 132501 (2015).

    Article  PubMed  ADS  Google Scholar 

  51. Garcia Ruiz, R. F. et al. High-precision multiphoton ionization of accelerated laser-ablated species. Phys. Rev. X 8, 041005 (2018).

    CAS  Google Scholar 

  52. Vernon, A. R. et al. Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE. Nucl. Instrum. Methods. Phys. Res. B 463, 384–389 (2020).

    Article  CAS  ADS  Google Scholar 

  53. Ágota, K. et al. Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment. Nucl. Instrum. Methods Phys. Res. B 463, 398–402 (2019).

    Google Scholar 

  54. Steck, D. A. Rubidium 87 D line data, revision 2.2.1 https://steck.us/alkalidata/ (21 November 2019).

  55. Newville, M. et al. LMFIT: non-linear least-square minimization and curve-fitting for Python. Zenodo https://doi.org/10.5281/zenodo.11813 (2014).

  56. Brown, J.M. & Carrington, A. Rotational Spectroscopy of Diatomic Molecules (Cambridge Univ. Press, 2003).

  57. Udrescu, S.M. et al. Precision spectroscopy and laser cooling scheme of a radium-containing molecule. figshare https://doi.org/10.6084/m9.figshare.23703981 (2023).

Download references

Acknowledgements

This work was supported by the Office of Nuclear Physics, US Department of Energy, under grants DE-SC0021176 and DE-SC0021179 (S.M.U., S.G.W., R.F.G.R., A.J.B.); the MISTI Global Seed Funds (S.M.U.); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 328961117 – SFB 1319 ELCH (A.A.B., R.B., K.G., T.F.G.); STFC grants ST/P004423/1 and ST/V001116/1 (M.L.B., K.T.F., H.A.P., J.R.R., J.W.); Belgian Excellence of Science (EOS) project No. 40007501 (G.N.); KU Leuven C1 project No. C14/22/104 (M.A.-K., T.E.C., R.P.d.G., G.N.); FWO project No. G081422N (M.A.-K., G.N.); International Research Infrastructures (IRI) project No. I001323N (M.A.-K., T.E.C., R.P.d.G., A.D., S.G., L.L., G.N., B.v.d.B.); the European Unions Grant Agreement 654002 (ENSAR2); LISA: European Union’s H2020 Framework Programme under grant agreement no. 861198 (M.A., D.H., M.N., J.W.); The Swedish Research Council (2016-03650 and 2020-03505) (D.H., M.N.). The National Key RD Program of China (No: 2022YFA1604800) (X.F.Y.) and the National Natural Science Foundation of China (No:12027809). (X.F.Y.). We thank R. Field, T. Isaev, L. Skripnikov and A. Zaitsevskii for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.M.U. and S.G.W. contributed equally to this work. S.M.U. led the data analysis and S.G.W. led the experiments. S.M.U., S.G.W., A.A.B., M.A.-K., R.F.G.R., M.A., I.B., R.B., M.L.B., C.L.B., A.J.B., K.C., T.E.C., A.D., S.F., K.G., S.G., T.F.G., R.H., A.K., S.K., L.L., M.N., H.A.P., J.R.R., S.R., B.v.d.B., A.R.V., Q.W., J.W. and C.Z. performed the experiment. S.M.U. and A.A.B. performed the data analysis. S.M.U. prepared the figures. S.M.U., S.G.W. and R.F.G.R. prepared the manuscript. All authors discussed the results and contributed to the manuscript at different stages.

Corresponding authors

Correspondence to S. M. Udrescu, S. G. Wilkins or R. F. Garcia Ruiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alec Owens, Aiko Takamine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Example of rovibronic spectra of the second step used in the experimental scheme.

The red dots represent the measured data while the blue line is the best fit to the data. The x-axis corresponds to the wavenumber of the second laser used in the excitation-ionization scheme, Doppler-corrected to the molecular rest frame and shifted by \({{{{T}}}}_{{\Pi }_{1/2,0}}=13284.427\,{{{{\rm{cm}}}}}^{-1}\) (see Methods for the details of the fit). The y-axis shows the rate in arbitrary units (a.u.). The errorbars show one standard deviation statistical uncertainty.

Source data

Extended Data Fig. 2 Example of measured spectra for the \({1}^{{\prime} }\leftarrow {1}^{{\prime\prime} }\) transitions.

In the centre, in blue, we present the simulated RaF spectrum for J ≤ 100, over a range of ~ 70 cm−1 (J is the rotational quantum number of the rotational levels in the X2Σ+ electronic level). Figures in magnified views show measured spectra for different regions (note the broken x-axis present in some of the figures). The connected red dots show the experimental data, whereas the continuous blue line represents the best fit to the data. The errorbars indicate one standard deviation statistical uncertainty. For each spectrum we also show the covered range of J-values (see the main text and Methods for the details of the fit). The values on the x-axis correspond to the wavenumber of the first laser used in the excitation-ionization scheme, Doppler-corrected to the molecular rest frame and shifted by \({{{{T}}}}_{{\Pi }_{1/2,0}}=13284.427\,{{{{\rm{cm}}}}}^{-1}\). On the y-axis we show the rate in arbitrary units (a.u.).

Extended Data Fig. 3 Location of the bandheads in the \({0}^{{\prime} }\leftarrow {0}^{{\prime\prime} }\) rovibronic transitions.

The bandhead locations are indicated with green arrows. The red dots represent the measured data while the blue line is the best fit to the data (see Methods for the details of the fit). The x-axis corresponds to the wavenumber of the first laser used in the excitation-ionization scheme, Doppler-corrected to the molecular rest frame and shifted by \({{{{T}}}}_{{\Pi }_{1/2,0}}=13284.427\,{{{{\rm{cm}}}}}^{-1}\). The y-axis shows the rate in arbitrary units (a.u.). The errorbars show one standard deviation statistical uncertainty.

Source data

Extended Data Fig. 4 Example of \({0}^{{\prime} }\leftarrow {0}^{{\prime\prime} }\) rovibronic spectra for different second-step laser wavenumbers.

The red, blue and green dots correspond to separate scans of the first step laser, while the second-step laser wavenumber, Doppler-shifted to the molecular rest frame, was kept fixed at 15485.23(2) cm−1, 15485.39(2) cm−1, and 15485.56(2) cm−1, respectively. Increasing the wavenumber of the second-step laser facilitated the observation of new transitions starting from levels with higher rotational quantum numbers, J, in the A2Π1/2 ← X2Σ+ spectrum (the new peaks appearing on the left). The maximum J-value of the shown spectra increases from \({{{{J}}}}_{\max }=25.5\) to \({{{{J}}}}_{\max }=27.5\). The x-axis corresponds to the wavenumber of the first laser used in the excitation-ionization scheme, Doppler-corrected to the molecular rest frame and shifted by \({{{{T}}}}_{{\Pi }_{1/2,0}}=13284.427\,{{{{\rm{cm}}}}}^{-1}\). The y-axis shows the rate in arbitrary units (a.u.). The errorbars show one standard deviation statistical uncertainty.

Source data

Extended Data Table 1 Vibrationally independent rotational constants of the X2Σ+ and A2Π1/2 electronic states

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udrescu, S.M., Wilkins, S.G., Breier, A.A. et al. Precision spectroscopy and laser-cooling scheme of a radium-containing molecule. Nat. Phys. 20, 202–207 (2024). https://doi.org/10.1038/s41567-023-02296-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02296-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing