Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms

Abstract

A supersolid is a counterintuitive phase of matter that combines the global phase coherence of a superfluid with a crystal-like self-modulation in space. Recently, such states have been experimentally realized using dipolar quantum gases. Here we investigate the response of a dipolar supersolid to an interaction quench that shatters the global phase coherence. We identify a parameter regime in which this out-of-equilibrium state rephases, indicating superfluid flow across the sample as well as an efficient dissipation mechanism. We find a crossover to a regime where the tendency to rephase gradually decreases until the system relaxes into an incoherent droplet array. Although a dipolar supersolid is, by its nature, ‘soft’, we capture the essential behaviour of the de- and rephasing process within a rigid Josephson junction array model. Yet, both experiment and simulation indicate that the interaction quench causes substantial collective mode excitations that connect to phonons in solids and affect the phase dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram, experimental sequence and starting condition.
Fig. 2: Phase scrambling.
Fig. 3: Rephasing.
Fig. 4: Out-of-equilibrium dynamics.
Fig. 5: Density-link dependence of rephasing dynamics.

Similar content being viewed by others

Data availability

Source data are available for this paper51. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cohen-Tannoudji, C. & Guéry-Odelin, D. Advances in Atomic Physics: An Overview (World Scientific, 2011).

  2. Svistunov, B. V. et al. Superfluid States of Matter (CRC Press, 2015).

  3. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  4. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  5. Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013).

    Article  Google Scholar 

  6. Wright, E. M., Walls, D. F. & Garrison, J. C. Collapses and revivals of Bose–Einstein condensates formed in small atomic samples. Phys. Rev. Lett. 77, 2158–2161 (1996).

    Article  ADS  Google Scholar 

  7. Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419, 51–54 (2002).

    Article  ADS  Google Scholar 

  8. Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation by merging of multiple trapped Bose–Einstein condensates. Phys. Rev. Lett. 98, 110402 (2007).

    Article  ADS  Google Scholar 

  9. del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  Google Scholar 

  10. Aidelsburger, M. et al. Relaxation dynamics in the merging of N independent condensates. Phys. Rev. Lett. 119, 190403 (2017).

    Article  ADS  Google Scholar 

  11. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  12. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  ADS  Google Scholar 

  13. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    Google Scholar 

  14. Cataliotti, F. S. et al. Josephson junction arrays with Bose–Einstein condensates. Science 293, 843–846 (2001).

    Article  ADS  Google Scholar 

  15. Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  16. Levy, S., Lahoud, E., Shomroni, I. & Steinhauer, J. The a.c. and d.c. Josephson effects in a Bose–Einstein condensate. Nature 449, 579–583 (2007).

    Article  ADS  Google Scholar 

  17. Lu, Z.-K., Li, Y., Petrov, D. S. & Shlyapnikov, G. V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 115, 075303 (2015).

    Article  ADS  Google Scholar 

  18. Cinti, F. & Boninsegni, M. Classical and quantum filaments in the ground state of trapped dipolar Bose gases. Phys. Rev. A 96, 013627 (2017).

    Article  ADS  Google Scholar 

  19. Wenzel, M., Böttcher, F., Langen, T., Ferrier-Barbut, I. & Pfau, T. Striped states in a many-body system of tilted dipoles. Phys. Rev. A 96, 053630 (2017).

    Article  ADS  Google Scholar 

  20. Baillie, D. & Blakie, P. B. Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).

    Article  ADS  Google Scholar 

  21. Roccuzzo, S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose–Einstein condensate confined in a tube. Phys. Rev. A 99, 041601 (2019).

    Article  ADS  Google Scholar 

  22. Kora, Y. & Boninsegni, M. Patterned supersolids in dipolar Bose systems. J. Low Temp. Phys. 197, 337–347 (2019).

    Article  ADS  Google Scholar 

  23. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).

    Article  ADS  Google Scholar 

  24. Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article  Google Scholar 

  25. Petter, D. et al. High-energy Bragg scattering measurements of a dipolar supersolid. Preprint at https://arxiv.org/abs/2005.02213 (2020).

  26. Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

    Article  ADS  Google Scholar 

  27. Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of an array of independent Bose–Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004).

    Article  ADS  Google Scholar 

  28. Kohstall, C. et al. Observation of interference between two molecular Bose–Einstein condensates. New J. Phys. 13, 065027 (2011).

    Article  ADS  Google Scholar 

  29. Chomaz, L. et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Commun. 6, 6162 (2015).

    Article  ADS  Google Scholar 

  30. Fisher, N. I. Statistical Analysis Of Circular Data (Cambridge Univ. Press, 1993).

  31. Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    Article  ADS  Google Scholar 

  32. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article  ADS  Google Scholar 

  33. Hertkorn, J. et al. Fate of the amplitude mode in a trapped dipolar supersolid. Phys. Rev. Lett. 123, 193002 (2019).

    Article  ADS  Google Scholar 

  34. Fazio, R. & van der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Phys. Rep. 355, 235 (2001).

    Article  ADS  MATH  Google Scholar 

  35. Risken, H. The Fokker–Planck Equation (Springer, 1961).

  36. Ambegaokar, V. & Halperin, B. I. Voltage due to thermal noise in the dc Josephson effect. Phys. Rev. Lett. 22, 1364–1366 (1969).

    Article  ADS  Google Scholar 

  37. Dalla Torre, E. G., Demler, E. & Polkovnikov, A. Universal rephasing dynamics after a quantum quench via sudden coupling of two initially independent condensates. Phys. Rev. Lett. 110, 090404 (2013).

    Article  ADS  Google Scholar 

  38. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  Google Scholar 

  39. Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82, 171–185 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  40. Ronen, S., Bortolotti, D. C. E. & Bohn, J. L. Bogoliubov modes of a dipolar condensate in a cylindrical trap. Phys. Rev. A 74, 013623 (2006).

    Article  ADS  Google Scholar 

  41. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  42. Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    Article  ADS  Google Scholar 

  43. Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates. Phys. Rev. A 94, 043618 (2016).

    Article  ADS  Google Scholar 

  44. Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).

    Article  ADS  Google Scholar 

  45. Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).

    Article  ADS  Google Scholar 

  46. Chin, C., Grimm, R., Julienne, P. S. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  Google Scholar 

  47. Ferrier-Barbut, I. et al. Scissors mode of dipolar quantum droplets of dysprosium atoms. Phys. Rev. Lett. 120, 160402 (2018).

    Article  ADS  Google Scholar 

  48. Maier, T. et al. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).

    Article  ADS  Google Scholar 

  49. Forbes, C., Evans, M., Hastings, N. & Peacock, B. Statistical Distributions 4th edn, Ch. 8, 55–61 (Wiley, 2010).

  50. Blakie, P., Baillie, D., Chomaz, L. & Ferlaino, F. Supersolidity in an elongated dipolar condensate. Preprint at https://arxiv.org/abs/2004.12577 (2020).

  51. Sohmen, M. Source Data—Ilzhofer et al.—Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Zenodo https://doi.org/10.5281/zenodo.4050234 (2020).

Download references

Acknowledgements

We are grateful to S. Erne, J. Schmiedmayer and the ERBIUM team for insightful discussions and M. A. Norcia for careful reading the manuscript. We acknowledge R. M. W. van Bijnen for developing the code for our eGPE ground-state simulations. G.M. and T.G. thank N. Caballero for insightful discussions on the numerical solution of the Langevin equation. This work is financially supported through an ERC Consolidator grant (RARE, no. 681432), an NFRI grant (MIRARE, no. ÖAW0600) from the Austrian Academy of Science and DFG/FWF (FOR 2247/PI2790) and by the Swiss National Science Foundation under Division II. M.S. and G.D. acknowledge support by the Austrian Science Fund FWF within the DK-ALM (no. W1259-N27). A.T. acknowledges support by the Austrian Science Fund FWF within the Lise Meitner programme (no. M2683-N36). L.C. acknowledges support through the FWF Elise Richter Fellowship no. V792. We also acknowledge the Innsbruck Laser Core Facility, financed by the Austrian Federal Ministry of Science, Research and Economy. Part of the computational results presented have been achieved using the HPC infrastructure LEO at the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Contributions

P.I., G.D. and A.T. conducted the experiment and collected the experimental data. M.S. and C.P. analysed the data. G.N., M.J.M., L.C., M.S. and C.P. performed and analysed the eGPE simulations. G.M. and T.G. developed the JJA model and performed the corresponding simulations. All the authors contributed to the writing of the paper. F.F. supervised the project.

Corresponding author

Correspondence to F. Ferlaino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Wavelength of the modulation and finite-sampling effect.

a, Difference between incoherent and coherent mean of the density profiles in the ID regime (1.65 G), peaking at the modulation wavelength d ± 2 μm (dashed lines). b, Histograms of 106 realisations (each) for calculations of ΔqΦ from uniformly random phases Φi, for q = 35 (green) and q = 100 (yellow) draws, respectively. The dashed vertical lines reflect the confidence interval enclosing 68.3 % (‘one σ’) of the calculated values. The solid lines depict a Beta distribution with same mean and variance as the drawn distribution of ΔqΦ (no free fit parameters).

Extended Data Fig. 2 Estimated scattering length.

Calculated B-to-as conversion for 164Dy. Red and blue shaded areas indicate the SSP and the ID region, respectively. The grey area indicates the BEC region, while the yellow areas indicate regions around the two narrow Feshbach resonances located at 2.174 G and 2.336 G where we observe increased atom loss. We estimate as,SSP = 88 a0 in the SSP at 2.43 G and as,ID = 76.9 a0 in the ID at 1.65 G.

Extended Data Fig. 3 Temporal evolution of the atom numbers and temperature in the ID regime and SSP.

a, Total atom number Ntotal, b, temperature T and atom numbers of c, the thermal and d, the coherent part, Nthermal and Ncoherent, as a function of the hold time th. The data sets at 1.65 G (blue) and 2.43 G (red) correspond to the ID regime and the SSP, respectively, whereas the one at 2 G (light blue) corresponds to the intermediate regime.

Extended Data Fig. 4 The global phase variation α from the RTE simulation of a scramble-and-rephase protocol.

a, Evolution of α over the hold time th. The solid orange line depicts an exponential fit to the data. In the inset, the integrated density n and the phase profile θ are exemplarily shown for t* = [3.5, 9.5, 60.5] ms (note the corresponding color filling of the plot markers). b, Residuals from the exponential fit to α.

Extended Data Fig. 5 Dependence of experimental rephasing dynamics on the density link strength \({\mathscr{L}}\).

a, Temporal evolution of ΔΦ (color map) at different \({\mathscr{L}}\) starting from phases scrambled in the ID regime. For each th we record q≥35 individual experimental realizations. For large \({\mathscr{L}}\) the system recovers its global phase coherence (ΔΦ 0), whereas for small \({\mathscr{L}}\) it does not (ΔΦ 1). b, AM (circles) and AΦ (diamonds) for the same data set at long hold time, th = 100 ms. The error bars (partly covered by plot markers) are statistical standard errors of AM and AΦ. The red filled pair of symbols corresponds to the data set presented in Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilzhöfer, P., Sohmen, M., Durastante, G. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Nat. Phys. 17, 356–361 (2021). https://doi.org/10.1038/s41567-020-01100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01100-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing