Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chiral materials and mechanisms for circularly polarized light-emitting diodes

Abstract

Circularly polarized (CP) light-emitting diodes (LEDs) hold great potential for next-generation technologies, from efficient photonic to room-temperature quantum devices. Chiral materials enable the generation of CP electroluminescence in LEDs through several different mechanisms, depending on the choice of material and device architecture. Here we summarize the mechanisms that give rise to CP electroluminescence in state-of-the-art materials, including organic small molecules, polymers, inorganic complexes and hybrid halide perovskites. We explore how the device architecture can be used to control the chiroptical properties and device performance, and suggest improvements to maximize the efficiency and dissymmetry factor of future CP LEDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of fundamental principles in CP LEDs.
Fig. 2: Aspects in the design of small-molecule chiral CP LED materials.
Fig. 3: Overview of molecules and assemblies of chiral polymeric emitters.
Fig. 4: HPs as future emissive materials in CP LEDs.
Fig. 5: Nonreciprocal approaches to CP LEDs.

Similar content being viewed by others

References

  1. Peeters, E. et al. Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 119, 9909–9910 (1997).

    Article  CAS  Google Scholar 

  2. Kim, B. C. et al. Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display. Opt. Express 22, A1725–A1730 (2014).

    Article  PubMed  ADS  Google Scholar 

  3. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  CAS  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  5. Hirohata, A. & Takanashi, K. Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2014).

    Article  ADS  Google Scholar 

  6. Han, J. et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 6, 1800538 (2018).

    Article  Google Scholar 

  7. Zhang, D. W., Li, M. & Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49, 1331–1343 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Y. et al. Chiral multi-resonance TADF emitters exhibiting narrowband circularly polarized electroluminescence with an EQE of 37.2 %. Angew. Chem. Int. Ed. 61, e202202227 (2022).

    Article  CAS  ADS  Google Scholar 

  9. Wu, Z. G. et al. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 31, 1900524 (2019).

    Article  Google Scholar 

  10. Zinna, F. & Di Bari, L. Lanthanide circularly polarized luminescence: bases and applications. Chirality 27, 1–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Albano, G., Pescitelli, G. & Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120, 10145–10243 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

    Article  CAS  Google Scholar 

  13. Tang, C. W. & Vanslyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  ADS  Google Scholar 

  14. Greenfield, J. L. et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 12, 8589–8602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhbaibi, K. et al. Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CP-OLED applications. Chem. Sci. 12, 5522–5533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  ADS  Google Scholar 

  17. Coughlin, F. J. et al. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium(III) luminophores. Inorg. Chem. 47, 2039–2048 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Li, T.-Y. et al. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes. Sci. Rep. 5, 14912 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Norel, L. et al. Metallahelicenes: easily accessible helicene derivatives with large and tunable chiroptical properties. Angew. Chem. Int. Ed. 49, 99–102 (2010).

    Article  CAS  Google Scholar 

  20. Shen, C. et al. Straightforward access to mono- and bis-cycloplatinated helicenes displaying circularly polarized phosphorescence by using crystallization resolution methods. Chem. Sci. 5, 1915–1927 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yan, Z. P. et al. Chiral iridium(III) complexes with four-membered Ir–S–P–S chelating rings for high-performance circularly polarized OLEDs. Chem. Commun. 55, 8215–8218 (2019).

    Article  CAS  Google Scholar 

  22. Yan, Z. et al. Configurationally stable platinahelicene enantiomers for efficient circularly polarized phosphorescent organic light‐emitting diodes. Chem. Eur. J. 25, 5672–5676 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, G. et al. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10−2. Adv. Funct. Mater. 31, 2102898 (2021).

    Article  CAS  Google Scholar 

  24. Brandt, J. R., Wang, X., Yang, Y., Campbell, A. J. & Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 138, 9743–9746 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, Z.-P., Luo, X.-F., Liao, K., Zheng, Y.-X. & Zuo, J.-L. Rational design of the platinahelicene enantiomers for deep-red circularly polarized organic light-emitting diodes. Front. Chem. 8, 501 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Qian, G. et al. Chiral platinum-based metallomesogens with highly efficient circularly polarized electroluminescence in solution-processed organic light-emitting diodes. Adv. Opt. Mater. 8, 2000775 (2020).

    Article  CAS  Google Scholar 

  27. Ying, A. et al. Copper(I) complexes with planar chirality realize efficient circularly polarized electroluminescence. Sci. China Chem. 66, 2274–2282 (2023).

    Article  CAS  Google Scholar 

  28. Chen, Y. et al. Strong circularly polarized electroluminescence based on chiral salen-Zn(II) complex monomer chromophores. Mater. Chem. Front. 3, 867–873 (2019).

    Article  CAS  ADS  Google Scholar 

  29. Jiménez, J.-R. et al. Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence. J. Am. Chem. Soc. 141, 13244–13252 (2019).

    Article  PubMed  Google Scholar 

  30. Doistau, B., Jiménez, J.-R. & Piguet, C. Beyond chiral organic (p-block) chromophores for circularly polarized luminescence: the success of d-block and f-block chiral complexes. Front. Chem. 8, 555 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Jiménez, J. et al. Bright long-lived circularly polarized luminescence in chiral chromium(III) complexes. Angew. Chem. Int. Ed. 60, 10095–10102 (2021).

    Article  Google Scholar 

  32. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article  ADS  Google Scholar 

  33. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Wang, F. et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 8, 2100569 (2021).

    Article  CAS  Google Scholar 

  36. Wan, S. P. et al. Axially chiral thermally activated delayed fluorescence emitters enabled by molecular engineering towards high-performance circularly polarized OLEDs. Chem. Eng. J. 468, 143508 (2023).

    Article  CAS  Google Scholar 

  37. Li, M. et al. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence. Angew. Chem. Int. Ed. 57, 2889–2893 (2018).

    Article  CAS  ADS  Google Scholar 

  38. Frédéric, L. et al. Maximizing chiral perturbation on thermally activated delayed fluorescence emitters and elaboration of the first top-emission circularly polarized OLED. Adv. Funct. Mater. 30, 2004838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Poulard, L. et al. Circularly polarized-thermally activated delayed fluorescent materials based on chiral bicarbazole donors. Chem. Commun. 58, 6554–6557 (2022).

    Article  CAS  Google Scholar 

  40. Sumsalee, P. et al. Axial and helical thermally activated delayed fluorescence bicarbazole emitters: opposite modulation of circularly polarized luminescence through intramolecular charge-transfer dynamics. J. Mater. Chem. C 9, 11905–11914 (2021).

    Article  CAS  Google Scholar 

  41. Yan, Z.-P. et al. Chiral thermally activated delayed fluorescence materials based on R/S-N2,N2′-diphenyl-[1,1′-binaphthalene]-2,2′-diamine donor with narrow emission spectra for highly efficient circularly polarized electroluminescence. Adv. Funct. Mater. 31, 2103875 (2021).

    Article  CAS  Google Scholar 

  42. Song, F. et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv. Funct. Mater. 28, 1800051 (2018).

    Article  ADS  Google Scholar 

  43. Li, M., Wang, Y. F., Zhang, D., Duan, L. & Chen, C. F. Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem. Int. Ed. 59, 3500–3504 (2020).

    Article  CAS  Google Scholar 

  44. Sabbatini, N., Guardigli, M. & Lehn, J. M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 123, 201–228 (1993).

    Article  CAS  Google Scholar 

  45. Lunkley, J. L., Shirotani, D., Yamanari, K., Kaizaki, S. & Muller, G. Chiroptical spectra of a series of tetrakis((+)-3- heptafluorobutylyrylcamphorato)lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes. Inorg. Chem. 50, 12724–12732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L. et al. Review on the electroluminescence study of lanthanide complexes. Adv. Opt. Mater. 7, 1801256 (2019).

    Article  Google Scholar 

  47. Zinna, F. et al. Modular chiral Eu(III) complexes for efficient circularly polarized OLEDs. J. Mater. Chem. C 10, 463–468 (2022).

    Article  CAS  Google Scholar 

  48. Zinna, F. et al. Impact of chiral ligands on photophysical and electro-optical properties of β-diketonate europium complexes in circularly polarized OLEDs. Chirality 35, 270–280 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Willis, O. G., Zinna, F. & Di Bari, L. NIR-circularly polarized luminescence from chiral complexes of lanthanides and d-metals. Angew. Chem. Int. Ed. 2023, e202302358 (2023).

    Google Scholar 

  50. Willis, O. G., Pucci, A., Cavalli, E., Zinna, F. & Di Bari, L. Intense 1400–1600 nm circularly polarised luminescence from homo- and heteroleptic chiral erbium complexes. J. Mater. Chem. C 11, 5290–5296 (2023).

    Article  CAS  Google Scholar 

  51. Utochnikova, V. V. et al. Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs. Dalton Trans. 50, 12806–12813 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Zinna, F., Giovanella, U. & Di Bari, L. Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 27, 1791–1795 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Zinna, F. et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 27, 1603719 (2017).

    Article  Google Scholar 

  54. Lee, D. M., Song, J. W., Lee, Y. J., Yu, C. J. & Kim, J. H. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. Adv. Mater. 29, 1700907 (2017).

    Article  Google Scholar 

  55. Oda, M. et al. Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes. Adv. Mater. 12, 362–365 (2000).

    Article  CAS  Google Scholar 

  56. Wan, L. et al. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 13, 8099–8105 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Kulkarni, C. et al. Molecular design principles for achieving strong chiroptical properties of fluorene copolymers in thin films. Chem. Mater. 31, 6633–6641 (2019).

    Article  CAS  Google Scholar 

  58. Yang, Y., da Costa, R. C., Smilgies, D., Campbell, A. J. & Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 25, 2624–2628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma, A. et al. Circular intensity differential scattering reveals the internal structure of polymer fibrils. J. Phys. Chem. Lett. 10, 7547–7553 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, D.-M., Lee, Y., Kim, J. & Yu, C.-J. Birefringence-dependent linearly-polarized emission in a liquid crystalline organic light emitting polymer. Opt. Express 25, 3737–3742 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Baek, K. et al. Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore. Light Sci. Appl. 8, 120 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Wade, J. et al. Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films. Nat. Commun. 11, 6137 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Laidlaw, B. et al. On the factors influencing the chiroptical response of conjugated polymer thin films. Chem. Commun. 57, 9914–9917 (2021).

    Article  CAS  Google Scholar 

  64. Wan, L., Liu, Y., Fuchter, M. J. & Yan, B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. Nat. Photonics 17, 193–199 (2022).

    Article  ADS  Google Scholar 

  65. Wang, Y. F. et al. Chiral TADF-active polymers for high-efficiency circularly polarized organic light-emitting diodes. Angew. Chem. Int. Ed. 60, 23619–23624 (2021).

    Article  CAS  Google Scholar 

  66. Teng, J. M., Zhang, D. W., Wang, Y. F. & Chen, C. F. Chiral conjugated thermally activated delayed fluorescent polymers for highly efficient circularly polarized polymer light-emitting diodes. ACS Appl. Mater. Interfaces 14, 1578–1586 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34, 2204460 (2022).

    Article  CAS  Google Scholar 

  69. Chu, Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33, 2007169 (2021).

    Article  CAS  Google Scholar 

  70. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Jana, M. K. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba–Dresselhaus spin–orbit coupling. Nat. Commun. 11, 4699 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Ma, J., Wang, H. & Li, D. Recent progress of chiral perovskites: materials, synthesis, and properties. Adv. Mater. 33, 2008785 (2021).

    Article  CAS  Google Scholar 

  73. Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019).

    Article  Google Scholar 

  74. Guan, Q. et al. Unprecedented chiral three‐dimensional hybrid organic‐inorganic perovskitoids. Angew. Chem. Int. Ed. 62, e202307034 (2023).

    Article  CAS  Google Scholar 

  75. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  ADS  Google Scholar 

  76. Liu, S. et al. Circularly polarized perovskite luminescence with dissymmetry factor up to 1.9 by soft helix bilayer device. Matter 5, 2319–2333 (2022).

    Article  CAS  Google Scholar 

  77. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    Article  CAS  ADS  Google Scholar 

  78. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Di Nuzzo, D. et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano 14, 7610–7616 (2020).

    Article  PubMed  Google Scholar 

  80. Yang, C. H., Xiao, S. B., Xiao, H., Xu, L. J. & Chen, Z. N. Efficient red-emissive circularly polarized electroluminescence enabled by quasi-2D perovskite with chiral spacer cation. ACS Nano 17, 7830–7836 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  ADS  Google Scholar 

  82. Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  84. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  86. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the spin selectivity effect. J. Phys. Chem. Lett. 11, 3660–3666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).

    Article  CAS  ADS  Google Scholar 

  88. Ye, C., Jiang, J., Zou, S., Mi, W. & Xiao, Y. Core–shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc. 144, 9707–9714 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Ayuso, D. et al. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 13, 866–871 (2019).

    Article  CAS  ADS  Google Scholar 

  90. Cai, R. et al. Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals. Nat. Commun. 14, 2472 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Chen, X. et al. Tuning spin-polarized lifetime in two-dimensional metal-halide perovskite through exciton binding energy. J. Am. Chem. Soc. 143, 19438–19445 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Albano, G., Pescitelli, G. & Di Bari, L. Reciprocal and non-reciprocal chiroptical features in thin films of organic dyes. ChemNanoMat 8, e202200219 (2022).

    Article  CAS  Google Scholar 

  93. Zinna, F. et al. Emergent nonreciprocal circularly polarized emission from an organic thin film. Adv. Mater. 32, 2002575 (2020).

    Article  CAS  Google Scholar 

  94. Zhang, Z. et al. Revealing the intrinsic chiroptical activity in chiral metal-halide semiconductors. J. Am. Chem. Soc. 144, 22242–22250 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Wan, L. et al. Highly efficient inverted circularly polarized organic light-emitting diodes. ACS Appl. Mater. Interfaces 12, 39471–39478 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Ward, M. D. et al. Best practices in the measurement of circularly polarised photodetectors. J. Mater. Chem. C 10, 10452–10463 (2022).

    Article  CAS  Google Scholar 

  97. Wade, J. et al. 500‐fold amplification of small molecule circularly polarised luminescence through circularly polarised FRET. Angew. Chem. Int. Ed. 60, 222–227 (2021).

    Article  CAS  Google Scholar 

  98. Yan, X. et al. Chiral carbon dots: synthesis and applications in circularly polarized luminescence, biosensing and biology. Chempluschem 88, e202200428 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Döring, A., Ushakova, E. & Rogach, A. L. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci. Appl. 11, 75 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  100. Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl Acad. Sci. USA 114, 1783–1788 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Zhang, X. et al. High brightness circularly polarized blue emission from non-doped OLEDs based on chiral binaphthyl-pyrene emitters. Chem. Commun. 55, 9845–9848 (2019).

    Article  CAS  Google Scholar 

  102. Di Nuzzo, D. et al. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11, 12713–12722 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 859752. S.F. acknowledges support from the Rowland Institute at Harvard. This material is based on work supported by the Air Force Office of Scientific Research under award no. FA9550-23-1-0633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Fuchter.

Ethics declarations

Competing interests

M.J.F. is an inventor on a patent describing blend polymer systems for CPL applications.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlan, F., Moreno-Naranjo, J.M., Gasparini, N. et al. Chiral materials and mechanisms for circularly polarized light-emitting diodes. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01408-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing