Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons

Abstract

The Landau level laser was proposed long ago as a unique source of monochromatic radiation that would be widely tunable in the THz and infrared spectral ranges using a magnetic field. However, despite many efforts, this appealing concept never progressed to the design of a reliable device. This is because of the efficient Auger scattering of Landau-quantized electrons, an intrinsic non-radiative recombination channel that eventually gains over cyclotron emission in all materials studied so far (conventional semiconductors with parabolic bands, but also in graphene with massless electrons). Auger processes are favoured in these systems because the Landau levels (or their subsets) are equally spaced in energy. Here, we show that this scheme does not apply to massless Kane electrons in gapless HgCdTe, where undesirable Auger scattering is strongly suppressed and sizeable cyclotron emission is observed. The gapless HgCdTe thus appears as a material of choice for future Landau level lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LL ladders and possible paths for Auger scattering of massive and massless electrons.
Fig. 2: Pump–probe experiments and Auger scattering of Landau-quantized massless Kane electrons.
Fig. 3: Pump–probe experiments using a circularly polarized probe beam.
Fig. 4: Cyclotron emission and absorption of 3D massless Kane electrons.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code for modelling of cyclotron mode energies is available from the corresponding author on reasonable request.

References

  1. Cohen, M. L. Cyclotron resonance and quasiparticles. AIP Conf. Proc. 772, 3–6 (2005).

    Article  ADS  Google Scholar 

  2. Lax, B. Cyclotron resonance and impurity levels in semiconductors. In Proc. Int. Symp. Quantum Electronics (ed. Townes, C. H.) 428 (Columbia University Press, 1960).

  3. Gornik, E. in Narrow Gap Semiconductors. Physics and Applications Vol. 133 (ed. Zawadzki, W.) 160–175 (Lecture Notes in Physics, Springer, 1980).

  4. Gornik, E. Far infrared light emitters and detectors. Physica B+C 127, 95–103 (1984).

    Article  ADS  Google Scholar 

  5. Knap, W. et al. A far-infrared spectrometer based on cyclotron resonance emission sources. Rev. Sci. Instrum. 63, 3293–3297 (1992).

    Article  ADS  Google Scholar 

  6. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  7. Wolff, P. A. Proposal for a cyclotron resonance maser in InSb. Phys. Physique Fizika 1, 147–157 (1964).

    Article  MathSciNet  Google Scholar 

  8. Wolff, P. A. Cyclotron resonance laser. US patent 3,265,977 (1966).

  9. Aoki, H. Novel Landau level laser in the quantum Hall regime. Appl. Phys. Lett. 48, 559–560 (1986).

    Article  ADS  Google Scholar 

  10. Morimoto, T., Hatsugai, Y. & Aoki, H. Cyclotron radiation and emission in graphene. Phys. Rev. B 78, 073406 (2008).

    Article  ADS  Google Scholar 

  11. Sirtori, C. Applied physics—bridge for the terahertz gap. Nature 417, 132–133 (2002).

    Article  ADS  Google Scholar 

  12. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  13. Gornik, E. et al. Landau-level-electron lifetimes in n-InSb. Phys. Rev. Lett. 40, 1151–1154 (1978).

    Article  ADS  Google Scholar 

  14. Potemski, M. et al. Auger recombination within Landau levels in a two-dimensional electron gas. Phys. Rev. Lett. 66, 2239–2242 (1991).

    Article  ADS  Google Scholar 

  15. Tsitsishvili, E. & Levinson, Y. Auger scattering between Landau levels in a two-dimensional electron gas. Phys. Rev. B 56, 6921–6930 (1997).

    Article  ADS  Google Scholar 

  16. Schneider, J. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys. Rev. Lett. 2, 504–505 (1959).

    Article  ADS  Google Scholar 

  17. Unterrainer, K. et al. Tunable cyclotron-resonance laser in germanium. Phys. Rev. Lett. 64, 2277–2280 (1990).

    Article  ADS  Google Scholar 

  18. Blaser, S., Rochat, M., Beck, M., Hofstetter, D. & Faist, J. Terahertz intersubband emission in strong magnetic fields. Appl. Phys. Lett. 81, 67–69 (2002).

    Article  ADS  Google Scholar 

  19. Jasnot, F. et al. Direct surface cyclotron resonance terahertz emission from a quantum cascade structure. Appl. Phys. Lett. 100, 102103 (2012).

    Article  ADS  Google Scholar 

  20. Morimoto, T., Hatsugai, Y. & Aoki, H. Cyclotron radiation and emission in graphene—a possibility of Landau-level laser. J. Phys. Conf. Ser. 150, 022059 (2009).

    Article  Google Scholar 

  21. Wendler, F. & Malic, E. Towards a tunable graphene-based Landau level laser in the terahertz regime. Sci. Rep. 5, 12646 (2015).

    Article  ADS  Google Scholar 

  22. Wang, Y., Tokman, M. & Belyanin, A. Continuous-wave lasing between Landau levels in graphene. Phys. Rev. A 91, 033821 (2015).

    Article  ADS  Google Scholar 

  23. Brem, S., Wendler, F. & Malic, E. Microscopic modeling of tunable graphene-based terahertz Landau-level lasers. Phys. Rev. B 96, 045427 (2017).

    Article  ADS  Google Scholar 

  24. Cole, N. & Antonsen, T. M. Electron cyclotron resonance gain in the presence of collisions. IEEE Trans. Plasma Sci. 45, 2945–2954 (2017).

    Article  ADS  Google Scholar 

  25. Brem, S., Wendler, F., Winnerl, S. & Malic, E. Electrically pumped graphene-based Landau-level laser. Phys. Rev. Mater. 2, 034002 (2018).

    Article  Google Scholar 

  26. Plochocka, P. et al. Slowing hot-carrier relaxation in graphene using a magnetic field. Phys. Rev. B 80, 245415 (2009).

    Article  ADS  Google Scholar 

  27. Mittendorff, M. et al. Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nat. Phys. 11, 75–81 (2015).

    Article  Google Scholar 

  28. König-Otto, J. C. et al. Four-wave mixing in Landau-quantized graphene. Nano Lett. 17, 2184–2188 (2017).

    Article  ADS  Google Scholar 

  29. Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957).

    Article  ADS  Google Scholar 

  30. Kacman, P. & Zawadzki, W. Spin magnetic moment and spin resonance of conduction electrons in α-Sn-type semiconductors. Phys. Status Solidi B 47, 629–642 (1971).

    Article  ADS  Google Scholar 

  31. Orlita, M. et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nat. Phys. 10, 233–238 (2014).

    Article  Google Scholar 

  32. Teppe, F. et al. Temperature-driven massless Kane fermions in HgCdTe crystals: verification of universal velocity and rest-mass description. Nat. Commun. 7, 12576 (2016).

    Article  ADS  Google Scholar 

  33. Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Relativistic Quantum Theory, Vol. 4, Part 1 (A Course of Theoretical Physics, Pergamon, 1971).

  34. Weiler, M. in Semiconductors and Semimetals Vol. 16 (eds Willardson, R. & Beer, A. C.) Ch. 3, 119–191 (Elsevier, 1981).

  35. Winnerl, S. et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011).

    Article  ADS  Google Scholar 

  36. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    Article  ADS  Google Scholar 

  37. Yavorskiy, D., Karpierz, K., Grynberg, M., Knap, W. & Lusakowski, J. Indium antimonide detector for spectral characterization of terahertz sources. J. Appl. Phys. 123, 064502 (2018).

    Article  ADS  Google Scholar 

  38. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  39. Sirtori, C. GaAs quantum cascade lasers: fundamentals and performance. Collection de la Société Française d’Optique 7, 03 (2002).

    Google Scholar 

  40. Williams, B. S. Terahertz quantum-cascade lasers. Nat. Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  41. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2007).

Download references

Acknowledgements

We acknowledge discussions with D. M. Basko and R. J. Nicholas. This work was supported by the ANR DIRAC3D project. The research was also partially supported by the CNRS through the LIA TeraMIR project, by the Occitanie region and MIPS Department of Montpellier University via the Terahertz Occitanie platform, and by the Foundation for Polish Science through the TEAM and IRA Programs financed by the EU within the SG OP Program. Part of this work has been supported by the project CALIPSO under the EC contract no. 312284. We are grateful to P. Michel and the FELBE team for their dedicated support.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was proposed by M.O. and M.P. The sample was grown by N.N.M. and S.A.D. Time-resolved and continuous-wave magneto-optical experiments were carried out by M.O., M.M., S.W., C.F. and M.H. The cyclotron emission experiments were performed by D.B.B., C.C., F.T. and W.K. All co-authors discussed the experimental data and interpretation of the results. M.O. and M.P. wrote the manuscript and all co-authors commented on it.

Corresponding author

Correspondence to M. Orlita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–3 and refs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

But, D.B., Mittendorff, M., Consejo, C. et al. Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons. Nat. Photonics 13, 783–787 (2019). https://doi.org/10.1038/s41566-019-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0496-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing