Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sexually transmitted infections and female reproductive health

Abstract

Women are disproportionately affected by sexually transmitted infections (STIs) throughout life. In addition to their high prevalence in women, STIs have debilitating effects on female reproductive health due to female urogenital anatomy, socio-cultural and economic factors. In this Review, we discuss the prevalence and impact of non-HIV bacterial, viral and parasitic STIs on the reproductive and sexual health of cisgender women worldwide. We analyse factors affecting STI prevalence among transgender women and women in low-income settings, and describe the specific challenges and barriers to improved sexual health faced by these population groups. We also synthesize the latest advances in diagnosis, treatment and prevention of STIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incident cases of chlamydia, gonorrhoea, trichomoniasis and syphilis in 2016.
Fig. 2: Anatomical sites affected by selected STIs.

Similar content being viewed by others

References

  1. Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ. 97, 548–562 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Reported STDs reach all-time high for 6th consecutive year. CDC (3 April 2021); https://www.cdc.gov/nchhstp/newsroom/2021/2019-std-surveillance-report-press-release.html

  3. Kreisel, K. M. et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2018. Sex. Transm. Dis. https://doi.org/10.1097/OLQ.0000000000001355 (2021).

  4. Rietmeijer, C. A. et al. Report from the national academies of sciences, engineering and medicine–STI: adopting a sexual health paradigm–a synopsis for sti practitioners, clinicians, and researchers. Sex. Transm. Dis. https://doi.org/10.1097/olq.0000000000001552 (2021).

  5. CDC Fact Sheet: 10 Ways STDs Impact Women Differently from Men (Centers for Disease Control and Prevention, 2011); https://www.cdc.gov/std/health-disparities/stds-women-042011.pdf

  6. Smolarczyk, K. et al. The impact of selected bacterial sexually transmitted diseases on pregnancy and female fertility. Int. J. Mol. Sci. 22, 2170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Gerwen, O. T., Aryanpour, Z., Selph, J. P. & Muzny, C. A. Anatomical and sexual health considerations among transfeminine individuals who have undergone vaginoplasty: a review. Int. J. STD AIDS 33, 106–113 (2022).

    Article  PubMed  Google Scholar 

  8. Van Gerwen, O. T. et al. Prevalence of sexually transmitted infections and human immunodeficiency virus in transgender persons: a systematic review. Transgend. Health 5, 90–103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deese, J. et al. Recent advances and new challenges in cisgender women’s gynecologic and obstetric health in the context of HIV. Clin. Obstet. Gynecol. 64, 475–490 (2021).

    Article  PubMed  Google Scholar 

  10. Hodges-Mameletzis, I. et al. Pre-exposure prophylaxis for HIV prevention in women: current status and future directions. Drugs 79, 1263–1276 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. O’Leary, A. Women and HIV in the twenty-first century: how can we reach the UN 2030 goal? AIDS Educ. Prev. 30, 213–224 (2018).

    Article  PubMed  Google Scholar 

  12. Heumann, C. L. Biomedical approaches to HIV prevention in women. Curr. Infect. Dis. Rep. 20, 11 (2018).

    Article  PubMed  Google Scholar 

  13. Kharsany, A. B. & Karim, Q. A. HIV infection and AIDS in Sub-Saharan Africa: current status, challenges and opportunities. Open AIDS J. 10, 34–48 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burk, R. D., Harari, A. & Chen, Z. Human papillomavirus genome variants. Virology 445, 232–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Burd, E. M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 16, 1–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Workowski, K. A. et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep. 70, 1–187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Human Papilloma Virus Statistics (Centers for Disease Control and Prevention, 2021); https://www.cdc.gov/std/hpv/stats.htm

  18. Bruni, L. et al. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 202, 1789–1799 (2010).

    Article  PubMed  Google Scholar 

  19. Brianti, P., De Flammineis, E. & Mercuri, S. R. Review of HPV-related diseases and cancers. New Microbiol. 40, 80–85 (2017).

    CAS  PubMed  Google Scholar 

  20. de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 141, 664–670 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Serrano, B., Brotons, M., Bosch, F. X. & Bruni, L. Epidemiology and burden of HPV-related disease. Best Pract. Res. Clin. Obstet. Gynaecol. 47, 14–26 (2018).

    Article  PubMed  Google Scholar 

  22. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, G. et al. Prevalent HPV infection increases the risk of HIV acquisition in African women: advancing the argument for HPV immunization. AIDS https://doi.org/10.1097/qad.0000000000003004 (2021).

  24. Liu, G., Sharma, M., Tan, N. & Barnabas, R. V. HIV-positive women have higher risk of human papilloma virus infection, precancerous lesions, and cervical cancer. AIDS 32, 795–808 (2018).

    Article  PubMed  Google Scholar 

  25. Kelly, H., Weiss, H. A., Benavente, Y., de Sanjose, S. & Mayaud, P. Association of antiretroviral therapy with high-risk human papillomavirus, cervical intraepithelial neoplasia, and invasive cervical cancer in women living with HIV: a systematic review and meta-analysis. Lancet HIV 5, e45–e58 (2018).

    Article  PubMed  Google Scholar 

  26. Smith, J. S. et al. Evidence for Chlamydia trachomatis as a human papillomavirus cofactor in the etiology of invasive cervical cancer in Brazil and the Philippines. J. Infect. Dis. 185, 324–331 (2002).

    Article  PubMed  Google Scholar 

  27. Wang, R. et al. Human papillomavirus vaccine against cervical cancer: opportunity and challenge. Cancer Lett. 471, 88–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Cervical Cancer Elimination Initiative (WHO, 2022); https://www.who.int/initiatives/cervical-cancer-elimination-initiative

  29. Monie, A., Hung, C.-F., Roden, R. & Wu, T. C. Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2, 97–105 (2008).

    PubMed  Google Scholar 

  30. Lei, J. et al. HP V vaccination and the risk of invasive cervical cancer. N. Eng. J. Med. 383, 1340–1348 (2020).

    Article  CAS  Google Scholar 

  31. Falcaro, M. et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet https://doi.org/10.1016/s0140-6736(21)02178-4 (2021).

  32. Bruni, L. et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010-2019. Prev. Med. 144, 106399 (2021).

    Article  PubMed  Google Scholar 

  33. Clifford, G. M. et al. Toward a unified anal cancer risk scale. Int. J. Cancer 148, 38–47 (2021). A meta-analysis of anal cancer incidence by risk group.

    Article  CAS  PubMed  Google Scholar 

  34. Chin-Hong, P. V. & Palefsky, J. M. Human papillomavirus anogenital disease in HIV-infected individuals. Dermatol. Ther. 18, 67–76 (2005).

    Article  PubMed  Google Scholar 

  35. Frisch, M., Biggar, R. J. & Goedert, J. J. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J. Natl Cancer Inst. 92, 1500–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Silverberg, M. J. et al. Risk of anal cancer in HIV-infected and HIV-uninfected individuals in North America. Clin. Infect. Dis. 54, 1026–1034 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Palefsky, J. et al. Treatment of anal high-grade squamous intraepithelial lesions to prevent anal cancer. N. Engl. J. Med. 386, 2273–2282 (2022).

  38. Ellsworth, G. B. et al. Xpert HPV as a screening tool for anal histologic high-grade squamous intraepithelial lesions in women living with HIV. J. Acquir. Immune Defic. Syndr. 87, 978–984 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chiao, E. Y. et al. Screening strategies for the detection of anal high-grade squamous intraepithelial lesions in women living with HIV. AIDS 34, 2249–2258 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Herpes Simplex Virus (WHO, 2022); https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus

  41. Bernstein, D. I. et al. Epidemiology, clinical presentation, and antibody response to primary infection with herpes simplex virus type 1 and type 2 in young women. Clin. Infect. Dis. 56, 344–351 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. James, C. et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 98, 315–329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mahant, S. et al. Neonatal herpes simplex virus infection among medicaid-enrolled children: 2009–2015. Pediatrics https://doi.org/10.1542/peds.2018-3233 (2019).

  44. Kimberlin, D. W. Neonatal herpes simplex infection. Clin. Microbiol. Rev. 17, 1–13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kimberlin, D. Herpes simplex virus, meningitis and encephalitis in neonates. Herpes 11, 65a–76a (2004).

    PubMed  Google Scholar 

  46. Masese, L. et al. Changes in the contribution of genital tract infections to HIV acquisition among Kenyan high-risk women from 1993 to 2012. AIDS 29, 1077–1085 (2015).

    Article  PubMed  Google Scholar 

  47. Freeman, E. E. et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20, 73–83 (2006).

  48. Looker, K. J. et al. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis. 20, 240–249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Feltner, C. et al. Serologic screening for genital herpes: an updated evidence report and systematic review for the US preventive services task force. JAMA 316, 2531–2543 (2016).

    Article  PubMed  Google Scholar 

  50. Venturino, E., Shoukat, A. & Moghadas, S. M. Dynamics of HSV-2 infection with a therapeutic vaccine. Heliyon 6, e04368 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, H. C. & Lee, H. K. Vaccines against genital herpes: where are we? Vaccines https://doi.org/10.3390/vaccines8030420 (2020).

  52. Stanberry, L. R. et al. Glycoprotein-D–adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347, 1652–1661 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Belshe, R. B. et al. Efficacy results of a trial of a herpes simplex vaccine. N. Engl. J. Med. 366, 34–43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernstein, D. I. et al. Therapeutic vaccine for genital herpes simplex virus-2 infection: findings from a randomized trial. J. Infect. Dis. 215, 856–864 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dropulic, L. K. et al. A randomized, double-blinded, placebo-controlled, phase 1 study of a replication-defective herpes simplex virus (HSV) type 2 vaccine, HSV529, in adults with or without HSV infection. J. Infect. Dis. 220, 990–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chandra, J. et al. Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: a randomized double blinded phase I/IIa trial. PLoS ONE 14, e0226320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Veselenak, R. L. et al. A Vaxfectin(®)-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine 30, 7046–7051 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Roth, K., Ferreira, V. H. & Kaushic, C. HSV-2 vaccine: current state and insights into development of a vaccine that targets genital mucosal protection. Microb. Pathog. 58, 45–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Peeling, R. W. et al. Syphilis. Nat. Rev. Dis. Primers 3, 17073 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sexually Transmitted Disease Surveillance 2019 (Centers for Disease Control and Prevention, accessed 1 December 2021); https://www.cdc.gov/std/statistics/2019/default.htm

  61. Data on Syphilis (WHO, 2021); https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/data-on-syphilis

  62. Wu, M. X. et al. Congenital syphilis on the rise: the importance of testing and recognition. Med. J. Aust. 215, 345–346.e1 (2021).

    Article  PubMed  Google Scholar 

  63. Hopkins, A. O. et al. Evaluation of the WHO/CDC Syphilis Serology Proficiency Programme to support the global elimination of mother-to-child transmission of syphilis: an observational cross-sectional study, 2008–2015. BMJ Open 10, e029434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. WHO Guideline on Syphilis Screening and Treatment for Pregnant Women (WHO, 2017).

  65. Wendel, G. D. Jr. et al. Treatment of syphilis in pregnancy and prevention of congenital syphilis. Clin. Infect. Dis. 35, S200–S209 (2002).

    Article  PubMed  Google Scholar 

  66. Walker, G. J. Antibiotics for syphilis diagnosed during pregnancy. Cochrane Database Syst. Rev. 2001, Cd001143 (2001).

    PubMed Central  Google Scholar 

  67. Alexander, J. M., Sheffield, J. S., Sanchez, P. J., Mayfield, J. & Wendel, G. D. Jr. Efficacy of treatment for syphilis in pregnancy. Obstet. Gynecol. 93, 5–8 (1999).

    CAS  PubMed  Google Scholar 

  68. Witkin, S. S. et al. Chlamydia trachomatis: the persistent pathogen. Clin. Vaccine Immunol. 24, e00203-17 (2017).

  69. He, W., Jin, Y., Zhu, H., Zheng, Y. & Qian, J. Effect of Chlamydia trachomatis on adverse pregnancy outcomes: a meta-analysis. Arch. Gynecol. Obstet. 302, 553–567 (2020).

    Article  PubMed  CAS  Google Scholar 

  70. Hammerschlag, M. R. Chlamydial and gonococcal infections in infants and children. Clin. Infect. Dis. 53, S99–S102 (2011).

    Article  PubMed  Google Scholar 

  71. Hammerschlag, M. R., Chandler, J. W., Alexander, E. R., English, M. & Koutsky, L. Longitudinal studies on chlamydial infections in the first year of life. Pediatr. Infect. Dis. 1 (1982).

  72. Gong, Z., Luna, Y., Yu, P. & Fan, H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. PLoS ONE 9, e107758 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Brotman, R. M. et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J. Infect. Dis. 202, 1907–1915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dukers-Muijrers, N. et al. Treatment effectiveness of azithromycin and doxycycline in uncomplicated rectal and vaginal Chlamydia trachomatis infections in women: a multicenter observational study (FemCure). Clin. Infect. Dis. 69, 1946–1954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kissinger, P. J. et al. Azithromycin treatment failure for Chlamydia trachomatis among heterosexual men with nongonococcal urethritis. Sex. Transm. Dis. 43, 599–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gratrix, J. et al. Evidence for increased Chlamydia case finding after the introduction of rectal screening among women attending 2 Canadian sexually transmitted infection clinics. Clin. Infect. Dis. 60, 398–404 (2015).

    Article  PubMed  Google Scholar 

  77. Rank, R. G. & Yeruva, L. An alternative scenario to explain rectal positivity in Chlamydia-infected individuals. Clin. Infect. Dis. 60, 1585–1586 (2015).

    PubMed  Google Scholar 

  78. Lazenby, G. B., Korte, J. E., Tillman, S., Brown, F. K. & Soper, D. E. A recommendation for timing of repeat Chlamydia trachomatis test following infection and treatment in pregnant and nonpregnant women. Int. J. STD AIDS 28, 902–909 (2017).

    Article  PubMed  Google Scholar 

  79. Phillips, S., Quigley, B. L. & Timms, P. Seventy years of Chlamydia vaccine research – limitations of the past and directions for the future. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00070 (2019).

  80. Whittington, W. L. et al. Determinants of persistent and recurrent Chlamydia trachomatis infection in young women: results of a multicenter cohort study. Sex. Transm. Dis. 28, 117–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Owusu-Edusei, K. Jr. et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex. Transm. Dis. 40, 197–201 (2013).

    Article  PubMed  Google Scholar 

  82. Unemo, M. et al. Sexually transmitted infections: challenges ahead. Lancet Infect. Dis. 17, e235–e279 (2017).

    Article  PubMed  Google Scholar 

  83. Williams, D. M., Grubbs, B. & Schachter, J. Primary murine Chlamydia trachomatis pneumonia in B-cell-deficient mice. Infect. Immun. 55, 2387–2390 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramsey, K. H., Soderberg, L. & Rank, R. G. Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect. Immun. 56, 1320–1325 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Quillin, S. J. & Seifert, H. S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16, 226–240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hook, E. W. in Sexually Transmitted Diseases (eds Sparling, P. F. et al.) 451–466 (McGraw-Hill, 1999).

  87. Brunham, R. C., Gottlieb, S. L. & Paavonen, J. Pelvic inflammatory disease. N. Engl. J. Med. 372, 2039–2048 (2015).

    Article  PubMed  Google Scholar 

  88. Reekie, J. et al. Risk of pelvic inflammatory disease in relation to chlamydia and gonorrhea testing, repeat testing, and positivity: a population-based cohort study. Clin. Infect. Dis. 66, 437–443 (2017).

    Article  Google Scholar 

  89. Farley, T. A., Cohen, D. A. & Elkins, W. Asymptomatic sexually transmitted diseases: the case for screening. Prev. Med. 36, 502–509 (2003).

    Article  PubMed  Google Scholar 

  90. Gao, R. et al. Association of maternal sexually transmitted infections with risk of preterm birth in the United States. JAMA Netw. Open 4, e2133413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vallely, L. M. et al. Adverse pregnancy and neonatal outcomes associated with Neisseria gonorrhoeae: systematic review and meta-analysis. Sex. Transm. Infect. 97, 104–111 (2021).

    Article  PubMed  Google Scholar 

  92. Unemo, M. et al. Gonorrhoea. Nat. Rev. Dis. Primers 5, 79 (2019).

    Article  PubMed  Google Scholar 

  93. Multi-Drug Resistant Gonorrhoea (WHO, 2021); https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea

  94. Schwarcz, S. K. et al. National surveillance of antimicrobial resistance in Neisseria gonorrhoeae. The Gonococcal Isolate Surveillance Project. JAMA 264, 1413–1417 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Update to CDC’s sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb. Mortal. Wkly Rep. 56, 332–336 (2007).

  96. Allen, V. G. et al. Neisseria gonorrhoeae treatment failure and susceptibility to cefixime in Toronto, Canada. JAMA 309, 163–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Unemo, M., Golparian, D., Potočnik, M. & Jeverica, S. Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill. 17 (2012).

  98. Unemo, M., Golparian, D. & Hestner, A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill. 16, 19792 (2011).

  99. van Dam, A. P. et al. Verified clinical failure with cefotaxime 1g for treatment of gonorrhoea in the Netherlands: a case report. Sex. Transm. Infect. 90, 513–514 (2014).

    Article  PubMed  Google Scholar 

  100. Lewis, D. A. et al. Phenotypic and genetic characterization of the first two cases of extended-spectrum-cephalosporin-resistant Neisseria gonorrhoeae infection in South Africa and association with cefixime treatment failure. J. Antimicrob. Chemother. 68, 1267–1270 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Kueakulpattana, N. et al. Multidrug-resistant Neisseria gonorrhoeae infection in heterosexual men with reduced susceptibility to ceftriaxone, first report in Thailand. Sci. Rep. 11, 21659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, K. et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother. 74, 1812–1819 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Terkelsen, D. et al. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill. 22, 17–00659 (2017).

    Article  PubMed Central  Google Scholar 

  104. de Curraize, C. et al. Ceftriaxone-resistant Neisseria gonorrhoeae isolates (2010 to 2014) in France characterized by using whole-genome sequencing. Antimicrob. Agents Chemother. 60, 6962–6964 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jacobsson, S. et al. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrobial. Chemother. 73, 2072–2077 (2018).

    Article  CAS  Google Scholar 

  106. Jacobsson, S. et al. In vitro activity of the novel Pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 61, 11 (2017).

    Article  Google Scholar 

  107. Jacobsson, S. et al. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: future treatment option for gonorrhoea? J. Antimicrobial. Chemother. 74, 1591–1594 (2019).

    Article  CAS  Google Scholar 

  108. Taylor, S. N. et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med. 379, 1835–1845 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Le, W. et al. Susceptibility trends of zoliflodacin against multidrug-resistant Neisseria gonorrhoeae clinical isolates in Nanjing, China, 2014 to 2018. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.00863-20 (2021).

  110. Unemo, M. et al. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 76, 1221–1228 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Craig, A. P. et al. The potential impact of vaccination on the prevalence of gonorrhea. Vaccine 33, 4520–4525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ruiz García, Y. et al. Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. NPJ Vaccines 6, 130–130 (2021).

  113. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Meites, E. et al. A review of evidence-based care of symptomatic Trichomoniasis and asymptomatic Trichomonas vaginalis Infections. Clin. Infect. Dis. 61, S837–S848 (2015).

  115. Van Gerwen, O. T. et al. Trichomoniasis and adverse birth outcomes: a systematic review and meta-analysis. BJOG 128, 1907–1915 (2021).

  116. Kissinger, P. & Adamski, A. Trichomoniasis and HIV interactions: a review. Sex. Trans. Infect. 89, 426–433 (2013).

    Article  Google Scholar 

  117. Yang, M. et al. Co-infection with Trichomonas vaginalis increases the risk of cervical intraepithelial neoplasia grade 2-3 among HPV16 positive female: a large population-based study. BMC Infect. Dis. 20, 642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, S. et al. Trichomonas vaginalis infection-associated risk of cervical cancer: a meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 228, 166–173 (2018).

    Article  PubMed  Google Scholar 

  119. Moodley, P. et al. Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clin. Infect. Dis. 34, 519–522 (2002).

    Article  PubMed  Google Scholar 

  120. Muzny, C. A. Why does Trichomonas vaginalis continue to be a "neglected" sexually transmitted infection? Clin. Infect. Dis. 67, 218–220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hoots, B. E. et al. A trich-y question: should Trichomonas vaginalis infection be reportable? Sex Transm. Dis. 40, 113–116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Patel, E. U. et al. Prevalence and correlates of Trichomonas vaginalis infection among men and women in the United States. Clin. Infect. Dis. 67, 211–217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Joseph Davey, D. L. et al. Prevalence of curable sexually transmitted infections in pregnant women in low- and middle-income countries from 2010 to 2015: a systematic review. Sex. Trans. Dis. 43, 450–458(2016).

  124. Schwebke, J. R. et al. Molecular testing for Trichomonas vaginalis in women: results from a prospective U.S. clinical trial. J. Clin. Microbiol. 49, 4106–4111 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Van Der Pol, B. et al. Detection of Trichomonas vaginalis DNA by use of self-obtained vaginal swabs with the BD ProbeTec Qx assay on the BD Viper system. J. Clin. Microbiol. 52, 885–889 (2014).

    Article  Google Scholar 

  126. Van Der Pol, B. et al. Clinical performance of the BD CTGCTV2 assay for the BD MAX System for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis infections. Sex. Trans. Dis. 48, 134–140 (2021).

    Article  CAS  Google Scholar 

  127. Van Der Pol, B. A profile of the cobas® TV/ MG test for the detection of Trichomonas vaginalis and Mycoplasma genitalium. Exp. Rev. Molec. Diag. 20, 381–386 (2020).

    Article  CAS  Google Scholar 

  128. Guidelines for the Management of Symptomatic Sexually Transmitted Infections (World Health Organization, 2021).

  129. Howe, K. & Kissinger, P. J. Single-dose compared with multidose metronidazole for the treatment of trichomoniasis in women: a meta-analysis. Sex. Trans. Dis. 44, 29–34 (2017).

    Article  CAS  Google Scholar 

  130. Kissinger, P. et al. Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: an open-label, randomised controlled trial. Lancet Infect. Dis. 18, 1251–1259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mann, J. R. et al. Treatment of trichomoniasis in pregnancy and preterm birth: an observational study. J. Womens Health 18, 493–497 (2009).

    Article  Google Scholar 

  132. Muzny, C. A., Richter, S. & Kissinger, P. Is It time to stop using single-dose oral metronidazole for the treatment of trichomoniasis in women? Sex. Trans. Dis. 46, e57–e59 (2019).

    Article  CAS  Google Scholar 

  133. Van Gerwen, O. T. et al. Epidemiology, natural history, diagnosis, and treatment of Trichomonas vaginalis in men. Clin. Infect. Dis. 73, 1119–1124 (2021).

  134. Muzny, C. A. et al. Efficacy and safety of single oral dosing of secnidazole for trichomoniasis in women: results of a phase 3, randomized, double-blind, placebo-controlled, delayed-treatment study. Clin. Infect. Dis. 73, e1282–e1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Herbst, J. H. et al. Estimating HIV prevalence and risk behaviors of transgender persons in the United States: a systematic review. AIDS Behav. 12, 1–17 (2008).

    Article  PubMed  Google Scholar 

  136. HIV Infection Risk, Prevention, and Testing Behaviors Among Men Who Have Sex With Men—National HIV Behavioral Surveillance, 23 U.S. Cities, 2017 (CDC, 2019).

  137. Sullivan, P. S. et al. Trends in the use of oral emtricitabine/tenofovir disoproxil fumarate for pre-exposure prophylaxis against HIV infection, United States, 2012-2017. Ann. Epidemiol. 28, 833–840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pitasi, M. A. et al. HIV testing among transgender women and men - 27 states and guam, 2014-2015. MMWR Morb. Mortal. Wkly Rep. 66, 883–887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Phillips, G. II et al. Utilization and avoidance of sexual health services and providers by YMSM and transgender youth assigned male at birth in Chicago. AIDS Care 31, 1282–1289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fisher, C. B. et al. Perceived barriers to HIV prevention services for transgender youth. LGBT Health 5, 350–358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Van Gerwen, O. T. et al. ‘It's behaviors, not identity’: attitudes and beliefs related to HIV risk and pre-exposure prophylaxis among transgender women in the Southeastern United States. PLoS ONE 17, e0262205 (2022).

  142. van der Ham, M. et al. Gender inequality and the double burden of disease in low-income and middle-income countries: an ecological study. BMJ Open 11, e047388 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Petca, A. et al. Non-sexual HPV transmission and role of vaccination for a better future (Review). Exp. Ther. Med. 20, 186–186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sun-Kuie, T., Tew-Hongw, H. & Soo-Kim, L.-T. Is genital human papillomavirus infection always sexually transmitted? Aust. N. Z. J. Obstet. Gynaecol. 30, 240–242 (1990).

    Article  Google Scholar 

  145. Hong, Y., Li, S.-Q., Hu, Y.-L. & Wang, Z.-Q. Survey of human papillomavirus types and their vertical transmission in pregnant women. BMC. Infect. Dis. 13, 109 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Graham, S. V. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin. Sci. 131, 2201–2221 (2017).

    Article  CAS  Google Scholar 

  147. Schiffer, J. T. et al. Herpes simplex virus-2 transmission probability estimates based on quantity of viral shedding. J. R. Soc. Interface 11, 20140160 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kriebs, J. M. Understanding herpes simplex virus: transmission, diagnosis, and considerations in pregnancy management. J. Midwifery Womens Health 53, 202–208 (2008).

    Article  PubMed  Google Scholar 

  149. Ribes, J. A. et al. Six-year study of the incidence of herpes in genital and nongenital cultures in a central Kentucky medical center patient population. J. Clin. Microbiol. 39, 3321–3325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cliffe, A. R. & Wilson, A. C. Restarting lytic gene transcription at the onset of herpes simplex virus reactivation. J. Virol. 91, 2 (2017).

    Article  Google Scholar 

  151. Stoltey, J. E. & Cohen, S. E. Syphilis transmission: a review of the current evidence. Sex. Health 12, 103–109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ko, W. J. et al. Successful prevention of syphilis transmission from a multiple organ donor with serological evidence of syphilis. Transplant. Proc. 30, 3667–3668 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Raguse, J. D. et al. Occupational syphilis following scalpel injury. Ann. Intern. Med. 156, 475–476 (2012).

    Article  PubMed  Google Scholar 

  154. Peeling, R. W. et al. Syphilis. Nat. Rev. Dis. Primers 3, 17073 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Chlamydia CDC Fact Sheet (CDC, accessed 7 Feb 2022); https://www.cdc.gov/std/chlamydia/stdfact-chlamydia.htm

  156. Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gonorrhea CDC Fact Sheet (CDC, accessed 7 February 2022); https://www.cdc.gov/std/gonorrhea/stdfact-gonorrhea-detailed.htm

  158. Quillin, S. J. & Seifert, H. S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16, 226–240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burch, T. A., Rees, C. W. & Reardon, L. V. Epidemiological studies on human trichomoniasis. Am. J. Trop. Med. Hyg. 8, 312–318 (1959).

    Article  CAS  PubMed  Google Scholar 

  160. Crucitti, T. et al. Non-sexual transmission of Trichomonas vaginalis in adolescent girls attending school in Ndola, Zambia. PLoS ONE 6, e16310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Peterson, K. & Drame, D. Iatrogenic transmission of Trichomonas vaginalis by a traditional healer. Sex. Trans. Infect. 86, 353–354 (2010).

    Article  Google Scholar 

  162. Edwards, T. et al. Trichomonas vaginalis: clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 42, 406–417 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. J. Van Wagoner for advice on the HSV vaccinology section of this paper and M. Kawai from the UAB Center of Clinical and Translational Sciences for assistance in creating figures. O.T.V.G. acknowledges the Doris Duke Charitable Foundation COVID-19 Fund to Retain Clinician Scientists (Grant No. 2021255) and the UAB COVID-19 CARES Retention Program (CARES at UAB).

Author information

Authors and Affiliations

Authors

Contributions

O.T.V.G. led efforts in the literature review and writing of this manuscript. C.A.M. and J.M.M. contributed to the final version of the manuscript. All authors conceived the main conceptual ideas for the manuscript together.

Corresponding author

Correspondence to Olivia T. Van Gerwen.

Ethics declarations

Competing interests

O.T.V.G. has received research grant support from Gilead Sciences, Inc. and Abbott Molecular, and serves on the scientific advisory board for Scynexis. C.A.M. has received research grant support from Lupin Pharmaceuticals, Gilead Sciences, Inc. and Abbott Molecular, is a consultant for Cepheid, Scynexis, Lupin Pharmaceuticals, PhagoMed and BioFire Diagnostics, and has received honoraria from Elsevier, Abbott Molecular, Cepheid, Becton Dickinson, Roche Diagnostics and Lupin. J.M. serves on scientific advisory committees for Merck and Gilead, has received research grant support from Becton Dickinson and GlaxoSmithKline, and serves as a scientific advisor for OSEL.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Gerwen, O.T., Muzny, C.A. & Marrazzo, J.M. Sexually transmitted infections and female reproductive health. Nat Microbiol 7, 1116–1126 (2022). https://doi.org/10.1038/s41564-022-01177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01177-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology