Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease

Abstract

Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH–ubiquinone oxidoreductase (Na+−NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trifluoperazine inhibits bacterial aggregation.
Fig. 2: Trifluoperazine and thioridazine regulate the piliation status of meningococci.
Fig. 3: Trifluoperazine and thioridazine release bacteria from compact microcolonies formed on human endothelial cells.
Fig. 4: Trifluoperazine and thioridazine reduce bacteria-induced endothelial cell injury and matrix degradation.
Fig. 5: Trifluoperazine and thioridazine induce bacterial clearance from human blood vessels in vivo and reduce signs of thrombosis, vascular injury and inflammation.
Fig. 6: Thioridazine improves the outcome of meningococcal infection alone or in combination with antibiotics.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the paper and the Supplementary Information. The sequences of the SNP variants resistant to the action of phenothiazines are available at NCBI’s BioProject database under accession number PRJNA481885.

References

  1. Pelicic, V. Type IV pili: e pluribus unum? Mol. Microbiol. 68, 827–837 (2008).

    Article  CAS  Google Scholar 

  2. Berry, J. L. & Pelicic, V. Exceptionally widespread nanomachines composed of Type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 (2015).

    Article  CAS  Google Scholar 

  3. Craig, L. & Li, J. Type IV pili: paradoxes in form and function. Curr. Opin. Struct. Biol. 18, 267–277 (2008).

    Article  CAS  Google Scholar 

  4. Kolappan, S. et al. Structure of the Neisseria meningitidis Type IV pilus. Nat. Commun. 7, 13015 (2016).

    Article  CAS  Google Scholar 

  5. Helaine, S. et al. PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol. Microbiol. 55, 65–77 (2005).

    Article  CAS  Google Scholar 

  6. Mikaty, G. et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 5, e1000314 (2009).

    Article  Google Scholar 

  7. Brown, D. R., Helaine, S., Carbonnelle, E. & Pelicic, V. Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by Type IV pili in Neisseria meningitidis. Infect. Immun. 78, 3053–3063 (2010).

    Article  CAS  Google Scholar 

  8. Stephens, D. S., Greenwood, B. & Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369, 2196–2210 (2007).

    Article  Google Scholar 

  9. Coureuil, M. et al. Meningococcus hijacks a β2-adrenoceptor/β-arrestin pathway to cross brain microvasculature endothelium. Cell 143, 1149–1160 (2010).

    Article  CAS  Google Scholar 

  10. Bernard, S. C. et al. Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat. Med. 20, 725–731 (2014).

    Article  CAS  Google Scholar 

  11. Maissa, N. et al. Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β2-adrenoceptor clusters assembled by alpha-actinin-4. Nat. Commun. 8, 15764 (2017).

    Article  CAS  Google Scholar 

  12. Coureuil, M. et al. Meningococcal Type IV pili recruit the polarity complex to cross the brain endothelium. Science 325, 83–87 (2009).

    Article  CAS  Google Scholar 

  13. Coureuil, M., Lecuyer, H., Bourdoulous, S. & Nassif, X. A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat. Rev. Microbiol. 15, 149–159 (2017).

    Article  CAS  Google Scholar 

  14. Sokolova, O. et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell. Microbiol. 6, 1153–1166 (2004).

    Article  CAS  Google Scholar 

  15. Melican, K., Michea Veloso, P., Martin, T., Bruneval, P. & Dumenil, G. Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog. 9, e1003139 (2013).

    Article  CAS  Google Scholar 

  16. Girardin, E., Grau, G. E., Dayer, J. M., Roux-Lombard, P. & Lambert, P. H. Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N. Engl. J. Med. 319, 397–400 (1988).

    Article  CAS  Google Scholar 

  17. Waage, A., Brandtzaeg, P., Halstensen, A., Kierulf, P. & Espevik, T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med. 169, 333–338 (1989).

    Article  CAS  Google Scholar 

  18. Join-Lambert, O. et al. Meningococcal interaction to microvasculature triggers the tissular lesions of purpura fulminans. J. Infect. Dis. 208, 1590–1597 (2013).

    Article  Google Scholar 

  19. Capel, E. et al. Peripheral blood vessels are a niche for blood-borne meningococci. Virulence 8, 1808–1819 (2017).

    Article  CAS  Google Scholar 

  20. Morand, P. C. et al. Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. EMBO J. 23, 2009–2017 (2004).

    Article  CAS  Google Scholar 

  21. Juarez, O. & Barquera, B. Insights into the mechanism of electron transfer and sodium translocation of the Na(+)-pumping NADH:quinone oxidoreductase. Biochim. Biophys. Acta 1817, 1823–1832 (2012).

    Article  CAS  Google Scholar 

  22. Jeworrek, C. et al. Effects of specific versus nonspecific ionic interactions on the structure and lateral organization of lipopolysaccharides. Biophys. J. 100, 2169–2177 (2011).

    Article  CAS  Google Scholar 

  23. Lloret, J. et al. Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl. Environ. Microbiol. 61, 3701–3704 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Seebach, J. et al. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc. Res. 75, 596–607 (2007).

    Article  CAS  Google Scholar 

  25. Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    Article  CAS  Google Scholar 

  26. Marra, A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs Res. Dev. 7, 1–16 (2006).

    CAS  Google Scholar 

  27. Felise, H. B. et al. An inhibitor of Gram-negative bacterial virulence protein secretion. Cell Host Microbe 4, 325–336 (2008).

    Article  CAS  Google Scholar 

  28. van Deuren, M. et al. Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J. Infect. Dis. 172, 433–439 (1995).

    Article  Google Scholar 

  29. Amaral, L. et al. Phenothiazines, bacterial efflux pumps and targeting the macrophage for enhanced killing of intracellular XDRTB. In Vivo 24, 409–424 (2010).

    CAS  PubMed  Google Scholar 

  30. Mazumder, R., Ganguly, K., Dastidar, S. G. & Chakrabarty, A. N. Trifluoperazine: a broad spectrum bactericide especially active on staphylococci and vibrios. Int. J. Antimicrob. Agents 18, 403–406 (2001).

    Article  CAS  Google Scholar 

  31. Amaral, L., Engi, H., Viveiros, M. & Molnar, J. Review. Comparison of multidrug resistant efflux pumps of cancer and bacterial cells with respect to the same inhibitory agents. In Vivo 21, 237–244 (2007).

    CAS  PubMed  Google Scholar 

  32. Reyes-Prieto, A., Barquera, B. & Juarez, O. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS ONE 9, e96696 (2014).

    Article  Google Scholar 

  33. Van Dellen, K. L., Houot, L. & Watnick, P. I. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for DeltaPsi in the transition to permanent attachment. J. Bacteriol. 190, 8185–8196 (2008).

    Article  Google Scholar 

  34. Minato, Y. et al. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on Vibrio cholerae metabolism, motility and osmotic stress resistance. PLoS ONE 9, e97083 (2014).

    Article  Google Scholar 

  35. Maier, B., Koomey, M. & Sheetz, M. P. A force-dependent switch reverses Type IV pilus retraction. Proc. Natl Acad. Sci. USA 101, 10961–10966 (2004).

    Article  CAS  Google Scholar 

  36. Clausen, M., Jakovljevic, V., Sogaard-Andersen, L. & Maier, B. High-force generation is a conserved property of Type IV pilus systems. J. Bacteriol. 191, 4633–4638 (2009).

    Article  CAS  Google Scholar 

  37. Kurre, R. & Maier, B. Oxygen depletion triggers switching between discrete speed modes of gonococcal Type IV pili. Biophys. J. 102, 2556–2563 (2012).

    Article  CAS  Google Scholar 

  38. Dewenter, L., Volkmann, T. E. & Maier, B. Oxygen governs gonococcal microcolony stability by enhancing the interaction force between Type IV pili. Integr. Biol. 7, 1161–1170 (2015).

    Article  CAS  Google Scholar 

  39. Amaral, L. & Viveiros, M. Thioridazine: a non-antibiotic drug highly effective, in combination with first line anti-tuberculosis drugs, against any form of antibiotic resistance of mycobacterium tuberculosis due to its multi-mechanisms of action. Antibiotics 6, 1–14 (2017).

    Article  Google Scholar 

  40. Bieber, D. et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118 (1998).

    Article  CAS  Google Scholar 

  41. Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).

    Article  CAS  Google Scholar 

  42. Novotny, L. A. et al. Antibodies against the majority subunit of Type IV pili disperse nontypeable Haemophilus influenzae biofilms in a LuxS-dependent manner and confer therapeutic resolution of experimental otitis media. Mol. Microbiol. 96, 276–292 (2015).

    Article  CAS  Google Scholar 

  43. Nassif, X. et al. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol. Microbiol. 8, 719–725 (1993).

    Article  CAS  Google Scholar 

  44. Pujol, C., Eugene, E., Marceau, M. & Nassif, X. The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proc. Natl Acad. Sci. USA 96, 4017–4022 (1999).

    Article  CAS  Google Scholar 

  45. Geoffroy, M. C., Floquet, S., Metais, A., Nassif, X. & Pelicic, V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res. 13, 391–398 (2003).

    Article  CAS  Google Scholar 

  46. Achtman, M. et al. Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J. Exp. Med. 168, 507–525 (1988).

    Article  CAS  Google Scholar 

  47. Dyer, D. W., McKenna, W., Woods, J. P. & Sparling, P. F. Isolation by streptonigrin enrichment and characterization of a transferrin-specific iron uptake mutant of Neisseria meningitidis. Microb. Pathog. 3, 351–363 (1987).

    Article  CAS  Google Scholar 

  48. Hoffmann, I., Eugene, E., Nassif, X., Couraud, P. O. & Bourdoulous, S. Activation of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria meningitidis. J. Cell Biol. 155, 133–143 (2001).

    Article  CAS  Google Scholar 

  49. Burrows, L. L. Pseudomonas aeruginosa twitching motility: Type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

    Article  CAS  Google Scholar 

  50. Weksler, B., Romero, I. A. & Couraud, P. O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10, 16 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Robert-Genthon and F. Chretien for providing the P. aeruginosa PAO1 strain and brain tissues; M. Favier of the histology facility, A. Schmitt and T. Guilbert of the imaging facility, and K. Bailly and M. Andrieu of the cytometry facility of the Institut Cochin for their expert technical help. K.D. and L.LG. were supported by a doctoral fellowship from la Region Ile de France and the Fondation pour la Recherche Médicale, respectively. This work was supported by collaborative research grants from the Agence Nationale de la Recherche of France (grant no. ANR-14-IFEC14-0006) to S.B. and X.N. in the framework of the Infect-ERA joint transnational call (European funding for infectious diseases research), by the Société d’Accélération du Transfert de Technologie (grant no. ANR-10-SATT-05-01) to S.B. and by grant no. ANR-10-EQPX-04-01 to F.L.

Author information

Authors and Affiliations

Authors

Contributions

K.D. and M.L.B. conducted the in vitro experiments and the histological and immunofluorescence analysis of the skin grafts; L.L.G., J.P.B., C.F. and O.J.-L. conducted the in vivo experiments; A.G. performed the qPCR and multiplex assays; H.B.-S. and B.D. performed dSTORM analysis; A.J. and D.E. performed the whole-genome sequencing analysis of the bacterial resistant strains; P.P. provided the human skin tissues; M.C. provided bacterial mutants; N.B. and F.L. conducted the SEM assays; P.C.M. discussed the results and helped to write the manuscript; X.N. provided bacterial strains and discussed the results; and S.B. designed the experiments, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Sandrine Bourdoulous.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Videos, Supplementary Tables 1–4 and Supplementary Figures 1–14b.

Reporting Summary

Supplementary Video 1

Sample movie of meningococcal aggregates treated with trifluoperazine.

Supplementary Video 2

Sample movie of meningococcal aggregates treated with trifluoperazine.

Supplementary Video 3

Sample movie of gonococcal aggregates treated with trifluoperazine.

Supplementary Video 4

Sample movie of PilT meningococcal aggregates treated with trifluoperazine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, K., Le Bris, M., Le Guennec, L. et al. Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nat Microbiol 4, 972–984 (2019). https://doi.org/10.1038/s41564-019-0395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0395-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research