Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalar topological photonic nested meta-crystals and skyrmion surface states in the light cone continuum

Abstract

Topological photonics is rapidly expanding. However, discovering three-dimensional topological electromagnetic systems can be more challenging than electronic systems for two reasons. First, the vectorial nature of electromagnetic waves results in complicated band dispersions, and simple tight-binding-type predictions usually fail. Second, topological electromagnetic surface modes inside the light cone have very low quality factors (Q factors). Here, we propose the concept of scalar topological photonics to address these challenges. Our approach is experimentally validated by employing a nested meta-crystal configuration using connected coaxial waveguides. They exhibit scalar-wave-like band dispersions, making the search for photonic topological phases an easier task. Their surface states have skyrmion-like electric field distributions, resulting in a whole, bright surface state band inside the light cone continuum. As such, the topological surface states in our three-dimensional nested crystals can be exposed to air, making such systems well-suited for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scalar topological photonics and skyrmion surface states.
Fig. 2: Example I: nested meta-crystal possessing spin-1 Weyl points.
Fig. 3: Experimental observation of skyrmion-textured topological surface states.
Fig. 4: Skyrmion-textured topological surface states.

Similar content being viewed by others

Data availability

All data used in the analysis are available in Figshare with the identifier ‘https://doi.org/10.6084/m9.figshare.22736801’.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  3. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  Google Scholar 

  4. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  5. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  6. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  CAS  Google Scholar 

  7. Kim, M., Jacob, Z. & Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020).

    Article  Google Scholar 

  8. Chen, Z. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021).

    Article  CAS  Google Scholar 

  9. Inan, U. S. & Inan, A. S. Electromagnetic Waves (Prentice Hall, 2000).

  10. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  11. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  CAS  Google Scholar 

  12. Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article  CAS  Google Scholar 

  13. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article  CAS  Google Scholar 

  14. Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article  Google Scholar 

  15. Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L. & Joannopoulos, J. D. An all-dielectric coaxial waveguide. Science 289, 415–419 (2000).

    Article  CAS  Google Scholar 

  16. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  Google Scholar 

  17. Saba, M., Hamm, J. M., Baumberg, J. J. & Hess, O. Group theoretical route to deterministic Weyl points in chiral photonic lattices. Phys. Rev. Lett. 119, 227401 (2017).

    Article  Google Scholar 

  18. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  Google Scholar 

  19. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  Google Scholar 

  20. Zhang, T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018).

    Article  CAS  Google Scholar 

  21. Yang, Y. et al. Topological triply degenerate point with double Fermi arcs. Nat. Phys. 15, 645–649 (2019).

    Article  CAS  Google Scholar 

  22. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  CAS  Google Scholar 

  23. Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).

    Article  CAS  Google Scholar 

  24. Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article  Google Scholar 

  25. Pendry, J. B., Martín-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  CAS  Google Scholar 

  26. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  CAS  Google Scholar 

  27. Zhao, E. Topological circuits of inductors and capacitors. Ann. Phys. 399, 289–313 (2018).

    Article  CAS  Google Scholar 

  28. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  CAS  Google Scholar 

  29. Watanabe, H. & Lu, L. Space group theory of photonic bands. Phys. Rev. Lett. 121, 263903 (2018).

    Article  CAS  Google Scholar 

  30. Satpathy, S., Zhang, Z. & Salehpour, M. R. Theory of photon bands in three-dimensional periodic dielectric structures. Phys. Rev. Lett. 65, 2478–2478 (1990).

    Article  CAS  Google Scholar 

  31. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  CAS  Google Scholar 

  32. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  CAS  Google Scholar 

  33. de Paz, M. B., Vergniory, M. G., Bercioux, D., García-Etxarri, A. & Bradlyn, B. Engineering fragile topology in photonic crystals: topological quantum chemistry of light. Phys. Rev. Res. 1, 032005 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Hong Kong Research Grants Council (16310422, 16310420, 16307821 and AoE/P-502/20) and the Hong Kong Scholars Program (XJ2019007).

Author information

Authors and Affiliations

Authors

Contributions

B.Y. and C.T.C. conceived the idea; B.Y. and Q.G. designed the structure; B.Y., Q.G. and Z.Z. proposed the fabrication scheme; B.Y., Q.G. and D.W. carried out all measurements; B.Y., Q.G. and H.W. carried out all simulations; B.Y., Q.G., D.W., H.W., L.X., W.X., M.K., R.-Y.Z., Z.-Q.Z. and C.T.C. developed and carried out the theoretical analysis; and B.Y., Q.G., Z.Z. and C.T.C. supervised the whole project. B.Y. and Q.G. wrote the paper and the Supplementary Information with input from all other authors.

Corresponding authors

Correspondence to Biao Yang, Qinghua Guo, Zhihong Zhu or C. T. Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jordi Gomis Bresco, Paloma Huidobro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Texts I–III.

Supplementary Video 1

A 3D metal printed conventional cell of the nested meta-crystal, where the core and cladding tube are separated.

Supplementary Video 2

The relative displacements between the core and cladding tube.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Guo, Q., Wang, D. et al. Scalar topological photonic nested meta-crystals and skyrmion surface states in the light cone continuum. Nat. Mater. 22, 1203–1209 (2023). https://doi.org/10.1038/s41563-023-01587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01587-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing