Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides

Abstract

Lattice oxygen redox offers an unexplored way to access superior electrochemical properties of transition metal oxides (TMOs) for rechargeable batteries. However, the reaction is often accompanied by unfavourable structural transformations and persistent electrochemical degradation, thereby precluding the practical application of this strategy. Here we explore the close interplay between the local structural change and oxygen electrochemistry during short- and long-term battery operation for layered TMOs. The substantially distinct evolution of the oxygen-redox activity and reversibility are demonstrated to stem from the different cation-migration mechanisms during the dynamic de/intercalation process. We show that the π stabilization on the oxygen oxidation initially aids in the reversibility of the oxygen redox and is predominant in the absence of cation migrations; however, the π-interacting oxygen is gradually replaced by σ-interacting oxygen that triggers the formation of O–O dimers and structural destabilization as cycling progresses. More importantly, it is revealed that the distinct cation-migration paths available in the layered TMOs govern the conversion kinetics from π to σ interactions. These findings constitute a step forward in unravelling the correlation between the local structural evolution and the reversibility of oxygen electrochemistry and provide guidance for further development of oxygen-redox layered electrode materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and electrochemical properties of NLMO and NLTMO.
Fig. 2: Comparison of out-of-plane cation disorder in NLMO and NLTMO.
Fig. 3: Redox stabilization mechanisms of oxidized lattice oxygen.
Fig. 4: Quantification of the contribution of each oxygen stabilization mechanism in NLMO and NLTMO.
Fig. 5: Oxygen dimerization generated by in-plane cation disorder in NLMO.

Similar content being viewed by others

Data availability

All relevant experimental and theoretical data within the article will be provided by the corresponding author on reasonable request.

References

  1. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  2. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  CAS  Google Scholar 

  3. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  4. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  5. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  CAS  Google Scholar 

  6. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  Google Scholar 

  7. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  8. Song, J.-H. et al. Anionic redox activity regulated by transition metal in lithium-rich layered oxides. Adv. Energy Mater. 10, 2001207 (2020).

    Article  CAS  Google Scholar 

  9. Xie, Y., Saubanère, M. & Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    Article  CAS  Google Scholar 

  10. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  CAS  Google Scholar 

  11. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  Google Scholar 

  12. Ku, K. et al. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269–1278 (2020).

    Article  CAS  Google Scholar 

  13. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  Google Scholar 

  14. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  CAS  Google Scholar 

  15. Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4, 420–434 (2020).

    Article  CAS  Google Scholar 

  16. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  CAS  Google Scholar 

  17. Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Editors’ choice—practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163, A2965–A2976 (2016).

    Article  CAS  Google Scholar 

  18. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  19. Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    Article  CAS  Google Scholar 

  20. Chen, Z., Li, J. & Zeng, X. C. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc. 141, 10751–10759 (2019).

    Article  CAS  Google Scholar 

  21. Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).

    Article  CAS  Google Scholar 

  22. Mortemard de Boisse, B. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018).

    Article  CAS  Google Scholar 

  23. Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016).

    Article  CAS  Google Scholar 

  24. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  Google Scholar 

  25. Cao, X. et al. Restraining oxygen loss and suppressing structural distortion in a newly Ti-substituted layered oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2. ACS Energy Lett. 4, 2409–2417 (2019).

    Article  CAS  Google Scholar 

  26. Somerville, J. W. et al. Nature of the ‘Z’-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 12, 2223–2232 (2019).

    Article  CAS  Google Scholar 

  27. Singh, G., López del Amo, J. M., Galceran, M., Pérez-Villar, S. & Rojo, T. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J. Mater. Chem. A 3, 6954–6961 (2015).

    Article  CAS  Google Scholar 

  28. Hong, J. et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem. 20, 10179–10186 (2010).

    Article  CAS  Google Scholar 

  29. Huang, Q. et al. Tailoring alternating heteroepitaxial nanostructures in Na-ion layered oxide cathodes via an in-situ composition modulation route. Nano Energy 44, 336–344 (2018).

    Article  CAS  Google Scholar 

  30. Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    Article  CAS  Google Scholar 

  31. Sudayama, T. et al. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy Environ. Sci. 13, 1492–1500 (2020).

    Article  CAS  Google Scholar 

  32. Kitchaev, D. A., Vinckeviciute, J. & Van der Ven, A. Delocalized metal-oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021).

    Article  CAS  Google Scholar 

  33. Freire, M. et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    Article  CAS  Google Scholar 

  34. Julien, C. M., Ait-Salah, A., Mauger, A. & Gendron, F. Magnetic properties of lithium intercalation compounds. Ionics 12, 21–32 (2006).

    Article  CAS  Google Scholar 

  35. Cramer, C. J., Tolman, W. B., Theopold, K. H. & Rheingold, A. L. Variable character of O–O and M–O bonding in side-on (η2) 1:1 metal complexes of O2. Proc. Natl Acad. Sci. USA 100, 3635–3640 (2003).

  36. Das, T. K., Couture, M., Ouellet, Y., Guertin, M. & Rousseau, D. L. Simultaneous observation of the O–O and Fe–O2 stretching modes in oxyhemoglobins. Proc. Natl Acad. Sci. USA 98, 479–484 (2001).

  37. Krebs, C., Edmondson, D. E. & Huynh, B. H. Demonstration of peroxodiferric intermediate in M-Ferritin ferroxidase reaction using rapid Freeze-Quench Mössbauer, Resonance Raman, and XAS spectroscopies. Methods Enzymol. 354, 436–454 (2002).

    Article  CAS  Google Scholar 

  38. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).

    Article  CAS  Google Scholar 

  39. Schweinar, K. et al. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J. Phys. Chem. Lett. 11, 5008–5014 (2020).

    Article  CAS  Google Scholar 

  40. Arciniegas Jaimes, D. M. et al. Effect of B-site order–disorder in the structure and magnetism of the new perovskite family La2MnB′O6 with B′ = Ti, Zr, and Hf. Inorg. Chem. 60, 4935–4944 (2021).

    Article  CAS  Google Scholar 

  41. Wang, Y. L. et al. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3. Sci. Rep. 6, 27840 (2016).

    Article  CAS  Google Scholar 

  42. Zhuo, Z. et al. Spectroscopic signature of oxidized oxygen states in peroxides. J. Phys. Chem. Lett. 9, 6378–6384 (2018).

  43. Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    Article  CAS  Google Scholar 

  44. Malavasi, L., Galinetto, P., Mozzati, M. C., Azzoni, C. B. & Flor, G. Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys. Chem. Chem. Phys. 4, 3876–3880 (2002).

  45. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (no. NRF-2019M3E6A1064522), and Creative Materials Discovery Program through the NRF funded by the Ministry of Science, ICT and Future Planning (grant no. NRF-2017M3D1A1039553). This research was supported by the Institute for Basic Science (grant no. IBS-R006-A2) and Korea Electric Power Corporation (grant no. R20XO02-31).

Author information

Authors and Affiliations

Authors

Contributions

D.E. and K.K. conceived the basic idea for this project and led the research. D.E. performed the material synthesis, electrochemical testing and structural/spectroscopic characterization including HRPD, XANES, STXM and Raman analyses. B.K. conducted the DFT calculations. B.K., J.-H.S., H.P. and H.-Y.J. discussed and provided fundamental ideas for the overall study. S.J. Kim and S.-P.C. performed the STEM measurements. S.J. Kim contributed to the interpretation of the results. J.P. and S.J. Kang measured and processed the DEMS data. M.H.L. and J.H.H. provided constructive advice for the experimental design for the structural characterization. H.-Y.J. and Y.K. assisted with processing of the SQUID and DEMS results, respectively. S.K.P., J.K., K.O. and D.-H.K. offered valuable comments on this project. D.E. and K.K. wrote the paper. K.K. supervised all aspects of the research.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–29, Tables 1–8 and refs. 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eum, D., Kim, B., Song, JH. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 21, 664–672 (2022). https://doi.org/10.1038/s41563-022-01209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01209-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing