Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2

Abstract

Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO2) at 90 bar and 50 °C. On introduction of water-saturated scCO2, in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO3·3H2O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric–mass spectrometry indicate that the stoichiometry of AMC is MgCO3·xH2O (x = 0.5–1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-lapsed sequence of pressurized AFM images collected from a polished natural brucite surface during exposure to different scCO2 environments.
Fig. 2: AFM, SEM and TEM images of as-synthesized brucite nanodiscs and AMC.
Fig. 3: ATR-IR experimental results (90 bar scCO2, 50 °C) on the powdered natural brucite.
Fig. 4: Structure of as-synthesized nanodisc brucite and AMC.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Source data for figure plots are available from the authors on request.

References

  1. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  Google Scholar 

  2. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897).

    Article  CAS  Google Scholar 

  3. De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).

    Article  Google Scholar 

  4. Hu, Q. et al. The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways. Faraday Discuss. 159, 509–523 (2012).

    Article  CAS  Google Scholar 

  5. Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    Article  CAS  Google Scholar 

  6. Von Euw, S. et al. Solid-state phase transformation and self-assembly of amorphous nanoparticles into higher-order mineral structures. J. Am. Chem. Soc. 142, 12811–12825 (2020).

    Article  Google Scholar 

  7. Liu, Z. et al. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl Acad. Sci. USA 117, 3397–3404 (2020).

    Article  CAS  Google Scholar 

  8. Karthika, S., Radhakrishnan, T. K. & Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16, 6663–6681 (2016).

    Article  CAS  Google Scholar 

  9. Montes-Hernandez, G. & Renard, F. Time-resolved in situ Raman spectroscopy of the nucleation and growth of siderite, magnesite, and calcite and their precursors. Cryst. Growth Des. 16, 7218–7230 (2016).

    Article  CAS  Google Scholar 

  10. Tanaka, J. Y., Kawano, J., Nagai, T. & Teng, H. Transformation process of amorphous magnesium carbonate in aqueous solution. J. Miner. Petrol. Sci. 114, 105–109 (2019).

    Article  CAS  Google Scholar 

  11. Ruiz-Agudo, E., Putnis, C. V. & Putnis, A. Coupled dissolution and precipitation at mineral–fluid interfaces. Chem. Geol. 383, 132–146 (2014).

    Article  CAS  Google Scholar 

  12. Loring, J. S. et al. In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. Environ. Sci. Technol. 45, 6204–6210 (2011).

    Article  CAS  Google Scholar 

  13. Loring, J. S. et al. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide. J. Phys. Chem. A 116, 4768–4777 (2012).

    Article  CAS  Google Scholar 

  14. Schaef, H. T., Windisch, C. F. Jr., McGrail, B. P., Martin, P. F. & Rosso, K. M. Brucite Mg(OH)2 carbonation in wet supercritical CO2: an in situ high pressure X-ray diffraction study. Geochim. Cosmochim. Acta 75, 7458–7471 (2011).

    Article  CAS  Google Scholar 

  15. Ulven, O. I., Beinlich, A., Hövelmann, J., Austrheim, H. & Jamtveit, B. Subarctic physicochemical weathering of serpentinized peridotite. Earth Planet. Sci. Lett. 468, 11–26 (2017).

    Article  CAS  Google Scholar 

  16. Morandeau, A. E. & White, C. E. Role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag. Chem. Mater. 27, 6625–6634 (2015).

    Article  CAS  Google Scholar 

  17. Frykstrand, S., Forsgren, J., Mihranyan, A. & Stromme, M. On the pore forming mechanism of upsalite, a micro- and mesoporous magnesium carbonate. Microporous Mesoporous Mater. 190, 99–104 (2014).

    Article  CAS  Google Scholar 

  18. Cölfen, H. A crystal-clear view. Nat. Mater. 9, 960–961 (2010).

    Article  Google Scholar 

  19. Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 109, 6088–6093 (2012).

    Article  CAS  Google Scholar 

  20. Xiong, Y. & Lord, A. S. Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl. Geochem. 23, 1634–1659 (2008).

    Article  CAS  Google Scholar 

  21. de Ruiter, L. & Austrheim, H. Formation of magnesium silicate hydrate cement in nature. J. Geol. Soc. 175, 308–320 (2018).

    Article  Google Scholar 

  22. Hovelmann, J., Putnis, C. V., Ruiz-Agudo, E. & Austrheim, H. Direct nanoscale observations of CO2 sequestration during brucite [Mg(OH)2] dissolution. Environ. Sci. Technol. 46, 5253–5260 (2012).

    Article  CAS  Google Scholar 

  23. Lea, A. S., Higgins, S. R., Knauss, K. G. & Rosso, K. M. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide. Rev. Sci. Instrum. 82, 043709 (2011).

    Article  CAS  Google Scholar 

  24. Spycher, N., Pruess, K. & Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 67, 3015–3031 (2003).

    Article  CAS  Google Scholar 

  25. Loring, J. S. et al. Evidence for carbonate surface complexation during forsterite carbonation in wet supercritical carbon dioxide. Langmuir 31, 7533–7543 (2015).

    Article  CAS  Google Scholar 

  26. Kumari, L., Li, W. Z., Vannoy, C. H., Leblanc, R. M. & Wang, D. Z. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram. Int. 35, 3355–3364 (2009).

    Article  CAS  Google Scholar 

  27. Poduska, K. M. et al. Decoupling local disorder and optical effects in infrared spectra: differentiating between calcites with different origins. Adv. Mater. 23, 550–554 (2011).

    Article  CAS  Google Scholar 

  28. Gueta, R. et al. Local atomic order and infrared spectra of biogenic calcite. Angew. Chem. Int. Ed. Engl. 46, 291–294 (2007).

    Article  CAS  Google Scholar 

  29. Leukel, S., Mondeshki, M. & Tremel, W. Hydrogen bonding in amorphous alkaline earth carbonates. Inorg. Chem. 57, 11289–11298 (2018).

    Article  CAS  Google Scholar 

  30. Sari, A., Tuzen, M. & Soylak, M. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J. Hazard. Mater. 144, 41–46 (2007).

    Article  CAS  Google Scholar 

  31. de Juan, A. & Tauler, R. Multivariate curve resolution (MCR) from 2000: orogress in concepts and applications. Crit. Rev. Anal. Chem. 36, 163–176 (2006).

    Article  Google Scholar 

  32. Cartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. & Sainz-Diaz, C. I. Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew. Chem. Int. Ed. Engl. 51, 11960–11970 (2012).

    Article  CAS  Google Scholar 

  33. White, C. E., Henson, N. J., Daemen, L. L., Hartl, M. & Page, K. Uncovering the true atomic structure of disordered materials: the structure of a hydrated amorphous magnesium carbonate (MgCO3·3D2O). Chem. Mater. 26, 2693–2702 (2014).

    Article  CAS  Google Scholar 

  34. Radha, A. V. et al. Energetic and structural studies of amorphous Ca1−xMgxCO3·nH2O (0 x  1). Geochim. Cosmochim. Acta 90, 83–95 (2012).

    Article  CAS  Google Scholar 

  35. Michel, F. M. et al. Structural characteristics of synthetic amorphous calcium carbonate. Chem. Mater. 20, 4720–4728 (2008).

    Article  CAS  Google Scholar 

  36. Goodwin, A. L. et al. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem. Mater. 22, 3197–3205 (2010).

    Article  CAS  Google Scholar 

  37. Singer, J. W., Yazaydin, A. Ö., Kirkpatrick, R. J. & Bowers, G. M. Structure and transformation of amorphous calcium carbonate: a solid-state 43Ca NMR and computational molecular dynamics investigation. Chem. Mater. 24, 1828–1836 (2012).

    Article  CAS  Google Scholar 

  38. Tribello, G. A., Bruneval, F., Liew, C. & Parrinello, M. A molecular dynamics study of the early stages of calcium carbonate growth. J. Phys. Chem. B 113, 11680–11687 (2009).

    Article  CAS  Google Scholar 

  39. Di Tommaso, D. & de Leeuw, N. H. Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Phys. Chem. Chem. Phys. 12, 894–901 (2010).

    Article  Google Scholar 

  40. Rodriguez-Cruz, S. E., Jockusch, R. A. & Williams, E. R. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 121, 8898–8906 (1999).

    Article  CAS  Google Scholar 

  41. Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 107, 16438–16443 (2010).

    Article  CAS  Google Scholar 

  42. Thompson, C. J. et al. Automated high-pressure titration system with in situ infrared spectroscopic detection. Rev. Sci. Instrum. 85, 044102 (2014).

    Article  Google Scholar 

  43. Hoeher, A., Mergelsberg, S., Borkiewicz, O. J., Dove, P. M. & Michel, F. M. A new method for in situ structural investigations of nano-sized amorphous and crystalline materials using mixed-flow reactors. Acta Crystallogr. A 75, 758–765 (2019).

    Article  CAS  Google Scholar 

  44. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

  45. Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  48. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  50. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  51. Chaka, A. M. & Felmy, A. R. Ab initio thermodynamic model for magnesium carbonates and hydrates. J. Phys. Chem. A 118, 7469–7488 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. H. Engelhard and E. Ilton for XPS measurement and data analyses. This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences and Biosciences Division through its Geosciences programme at Pacific Northwest National Laboratory (PNNL). H.T.S. acknowledges support from the DOE Office of Fossil Energy at PNNL through the National Energy Technology Laboratory, Morgantown, West Virginia. The high-pressure AFM, SEM and TEM analyses were performed at the Environmental Molecular Science Laboratory (EMSL), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at PNNL. The high-energy X-ray diffraction and PDF measurements were performed at Beamline 11-ID-B of the Advanced Photon Source (Argonne, IL, United States).

Author information

Authors and Affiliations

Authors

Contributions

X.Z., J.J.De.Y., H.T.S. and K.M.R. conceived and designed the experiments. X.Z. conducted the AFM experiments and data analysis. X.Z. synthesized the brucite nanodiscs and AMC and performed the ex-situ TEM measurement. A.S.L. and K.M.R. developed the high-pressure AFM and A.S.L. helped to collect the in situ high-pressure imaging data. A.M.C. performed the computer simulation. J.S.L. performed the IR measurements and reacted brucite to AMC for analysis by high-energy XRD, X-ray PDF and TGA–MS measurement. S.T.M. performed the high-energy XRD and X-ray PDF measurements and analysed the data. H.T.S. conducted the X-ray diffraction and TGA–MS measurements. E.N. performed the data analysis on the spatial distribution of the nesquehonite nucleation sites. O.Q. conducted the SEM measurement. X.Z., A.M.C., J.S.L., S.T.M., J.J.De.Y., H.T.S. and K.M.R. cowrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xin Zhang, Herbert T. Schaef or Kevin M. Rosso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Notes 1–16, discussion, description for the video and refs. 1–9.

Supplementary Video 1

In situ high-pressure AFM images from a polished natural brucite crystal surface during exposure to wet scCO2 (water saturated) at 90 bar, 50 °C and a flow rate of 250 µl min−1.

Supplementary Data 1

Computational model of brucite.

Supplementary Data 2

Computational model of hydromagnesite.

Supplementary Data 3

Computational model of Mg-calcium carbonate hemihydrate.

Supplementary Data 4

Computational model of Mg-monohydrocalcite.

Supplementary Data 5

Computational model of nesquehonite.

Supplementary Data 6

Computational model of pokrovskite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lea, A.S., Chaka, A.M. et al. In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2. Nat. Mater. 21, 345–351 (2022). https://doi.org/10.1038/s41563-021-01154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01154-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing