Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fundamentals of inorganic solid-state electrolytes for batteries

Abstract

In the critical area of sustainable energy storage, solid-state batteries have attracted considerable attention due to their potential safety, energy-density and cycle-life benefits. This Review describes recent progress in the fundamental understanding of inorganic solid electrolytes, which lie at the heart of the solid-state battery concept, by addressing key issues in the areas of multiscale ion transport, electrochemical and mechanical properties, and current processing routes. The main electrolyte-related challenges for practical solid-state devices include utilization of metal anodes, stabilization of interfaces and the maintenance of physical contact, the solutions to which hinge on gaining greater knowledge of the underlying properties of solid electrolyte materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of a bipolar-stacked solid-state battery cell.
Fig. 2: Multiscale ion transport and major associated techniques.
Fig. 3: Cation migration mechanisms and associated energy profiles.
Fig. 4: Evolution of chemical potential across the solid electrolyte in contact with an anode and a cathode.
Fig. 5: Reaction possibilities and functional scenarios for solid electrolyte/electrode interfaces in solid-state batteries.
Fig. 6: Mechanical degradation of a solid-state battery.
Fig. 7: Simplified flowchart of available methods for the processing of solid electrolytes for solid-state batteries.

Similar content being viewed by others

References

  1. Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017).

    CAS  Google Scholar 

  2. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Google Scholar 

  3. Inoue, T. & Mukai, K. Are all-solid-state lithium-ion batteries really safe? Verification by differential scanning calorimetry with an all-inclusive microcell. ACS Appl. Mater. Interfaces 9, 1507–1515 (2017).

    CAS  Google Scholar 

  4. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  5. Bartsch, T. et al. Gas evolution in all-solid-state battery cells. ACS Energy Lett. 3, 2539–2543 (2018).

    CAS  Google Scholar 

  6. Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

    CAS  Google Scholar 

  7. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS  Google Scholar 

  8. Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).

    CAS  Google Scholar 

  9. Yoshima, K., Harada, Y. & Takami, N. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J. Power Sources 302, 283–290 (2016).

    CAS  Google Scholar 

  10. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    CAS  Google Scholar 

  11. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    CAS  Google Scholar 

  12. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  13. Zhang, W. et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017).

    CAS  Google Scholar 

  14. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials — on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    CAS  Google Scholar 

  15. Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    CAS  Google Scholar 

  16. Bucci, G., Talamini, B., Renuka Balakrishna, A., Chiang, Y.-M. & Carter, W. C. Mechanical instability of electrode–electrolyte interfaces in solid-state batteries. Phys. Rev. Mater. 2, 105407 (2018).

    Google Scholar 

  17. Jansen, M. Volume effect or paddle-wheel mechanism — fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. Int. Ed. 30, 1547–1558 (1991).

    Google Scholar 

  18. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    CAS  Google Scholar 

  19. Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013).

    Google Scholar 

  20. Zhu, Z., Chu, I.-H., Deng, Z. & Ong, S. P. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015).

    CAS  Google Scholar 

  21. De Klerk, N. J. J. & Wagemaker, M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping. Chem. Mater. 28, 3122–3130 (2016).

    Google Scholar 

  22. Tanibata, N., Noi, K., Hayashi, A. & Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 4, 17120–17123 (2014).

    CAS  Google Scholar 

  23. Chu, I.-H. et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor. Sci. Rep. 6, 33733 (2016).

    CAS  Google Scholar 

  24. Deng, Y. et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015).

    CAS  Google Scholar 

  25. Deng, Y. et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl. Mater. Interfaces 9, 7050–7058 (2017).

    CAS  Google Scholar 

  26. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    CAS  Google Scholar 

  27. Burbano, M., Carlier, D., Boucher, F., Morgan, B. J. & Salanne, M. Sparse cyclic excitations explain the low ionic conductivity of stoichiometric Li7La3Zr2O12. Phys. Rev. Lett. 116, 135901 (2016).

    Google Scholar 

  28. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    CAS  Google Scholar 

  29. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    CAS  Google Scholar 

  30. Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    CAS  Google Scholar 

  31. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    CAS  Google Scholar 

  32. Adams, S. & Prasada Rao, R. Structural requirements for fast lithium ion migration in Li10GeP2S12. J. Mater. Chem. 22, 7687–7691 (2012).

    CAS  Google Scholar 

  33. Fang, H. & Jena, P. Li-rich antiperovskite superionic conductors based on cluster ions. Proc. Natl Acad. Sci. USA 114, 11046–11051 (2017).

    CAS  Google Scholar 

  34. Dawson, J. A. et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ. Sci. 11, 2993–3002 (2018).

    CAS  Google Scholar 

  35. Tang, W. S. et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637–3645 (2015).

    CAS  Google Scholar 

  36. Dimitrievska, M. et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12. Adv. Energy Mater. 8, 1703422 (2018).

    Google Scholar 

  37. Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    CAS  Google Scholar 

  38. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Google Scholar 

  39. Marcolongo, A. & Marzari, N. Ionic correlations and failure of Nernst–Einstein relation in solid-state electrolytes. Phys. Rev. Mater. 1, 025402 (2017).

    Google Scholar 

  40. Chandra, A., Bhatt, A. & Chandra, A. Ion conduction in superionic glassy electrolytes: an overview. J. Mater. Sci. Technol. 29, 193–208 (2013).

    CAS  Google Scholar 

  41. Bunde, A., Funke, K. & Ingram, M. D. Ionic glasses: history and challenges. Solid State Ion. 105, 1–13 (1998).

    CAS  Google Scholar 

  42. Billinge, S. J. L. & Kanatzidis, M. G. Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem. Commun. 2004, 749–760 (2004).

    Google Scholar 

  43. Mori, K. et al. Structural origin of massive improvement in Li-ion conductivity on transition from (Li2S)5(GeS2)(P2S5) glass to Li10GeP2S12 crystal. Solid State Ion. 301, 163–169 (2017).

    CAS  Google Scholar 

  44. Adams, S. & Swenson, J. Bond valence analysis of reverse Monte Carlo produced structural models; a way to understand ion conduction in glasses. J. Phys. Condens. Matter. 17, S87–S101 (2005).

    CAS  Google Scholar 

  45. Dietrich, C. et al. Lithium ion conductivity in Li2S–P2S5 glasses — building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017).

    CAS  Google Scholar 

  46. Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (LiPON). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    CAS  Google Scholar 

  47. Li, W., Ando, Y., Minamitani, E. & Watanabe, S. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. J. Chem. Phys. 147, 214106 (2017).

    Google Scholar 

  48. Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    CAS  Google Scholar 

  49. Tsukasaki, H., Mori, S., Morimoto, H., Hayashi, A. & Tatsumisago, M. Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Sci. Rep. 7, 4142 (2017).

    Google Scholar 

  50. Breuer, S., Uitz, M. & Wilkening, H. M. R. Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids. J. Phys. Chem. Lett. 9, 2093–2097 (2018).

    CAS  Google Scholar 

  51. Wu, J.-F. & Guo, X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3. Phys. Chem. Chem. Phys. 19, 5880–5887 (2017).

    CAS  Google Scholar 

  52. Dawson, J. A., Canepa, P., Famprikis, T., Masquelier, C. & Islam, M. S. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140, 362–368 (2018).

    CAS  Google Scholar 

  53. Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014).

    CAS  Google Scholar 

  54. Ganapathy, S., Yu, C., van Eck, E. R. H. & Wagemaker, M. Peeking across grain boundaries in a solid-state ionic conductor. ACS Energy Lett. 4, 1092–1097 (2019).

    CAS  Google Scholar 

  55. Kim, Y. et al. The effect of relative density on the mechanical properties of hot‐pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 99, 1367–1374 (2016).

    CAS  Google Scholar 

  56. Kudu, Ö. U. et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system. J. Power Sources 407, 31–43 (2018).

    CAS  Google Scholar 

  57. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2004).

    Google Scholar 

  58. Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

    Google Scholar 

  59. Duchardt, M., Ruschewitz, U., Adams, S., Dehnen, S. & Roling, B. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed. 57, 1351–1355 (2018).

    CAS  Google Scholar 

  60. Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018).

    CAS  Google Scholar 

  61. Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

    Google Scholar 

  62. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    CAS  Google Scholar 

  63. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    CAS  Google Scholar 

  64. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    CAS  Google Scholar 

  65. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    CAS  Google Scholar 

  66. Sakuda, A., Hayashi, A. & Tatsumisago, M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

    CAS  Google Scholar 

  67. Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).

    Google Scholar 

  68. Bielefeld, A., Weber, D. A. & Janek, J. Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019).

    CAS  Google Scholar 

  69. Bron, P., Roling, B. & Dehnen, S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017).

    CAS  Google Scholar 

  70. Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    CAS  Google Scholar 

  71. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

    CAS  Google Scholar 

  72. Nam, Y. J., Oh, D. Y., Jung, S. H. & Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    CAS  Google Scholar 

  73. Kim, D. H. et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

    CAS  Google Scholar 

  74. Braun, P., Uhlmann, C., Weiss, M., Weber, A. & Ivers-Tiffée, E. Assessment of all-solid-state lithium-ion batteries. J. Power Sources 393, 119–127 (2018).

    CAS  Google Scholar 

  75. Froboese, L., van der Sichel, J. F., Loellhoeffel, T., Helmers, L. & Kwade, A. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode. J. Electrochem. Soc. 166, A318–A328 (2019).

    Google Scholar 

  76. Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018).

    CAS  Google Scholar 

  77. Haruyama, J., Sodeyama, K., Han, L., Takada, K. & Tateyama, Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    CAS  Google Scholar 

  78. de Klerk, N. J. J. & Wagemaker, M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018).

    Google Scholar 

  79. Sang, L., Haasch, R. T., Gewirth, A. A. & Nuzzo, R. G. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017).

    CAS  Google Scholar 

  80. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Google Scholar 

  81. Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of li ion conducting sulfide solid electrolytes. Chem. Mater. 31, 707–713 (2019).

    CAS  Google Scholar 

  82. Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    CAS  Google Scholar 

  83. Tian, Y. et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017).

    CAS  Google Scholar 

  84. Tang, H. et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2018).

    CAS  Google Scholar 

  85. Chen, T., Ceder, G., Sai Gautam, G. & Canepa, P. Evaluation of Mg compounds as coating materials in Mg batteries. Front. Chem. 7, 1–10 (2019).

    CAS  Google Scholar 

  86. Maier, J. in Handbook of Solid State Chemistry (eds Dronskowski, R., Kikkawa, S. & Stein, A.) 665–701 (Wiley, 2017).

  87. Lu, Z. & Ciucci, F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem. Mater. 29, 9308–9319 (2017).

    CAS  Google Scholar 

  88. Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013).

    CAS  Google Scholar 

  89. Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    CAS  Google Scholar 

  90. Sakuma, M., Suzuki, K., Hirayama, M. & Kanno, R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion. 285, 101–105 (2016).

    CAS  Google Scholar 

  91. Wenzel, S. et al. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces 8, 28216–28224 (2016).

    CAS  Google Scholar 

  92. Ma, C. et al. Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016).

    CAS  Google Scholar 

  93. Rettenwander, D. et al. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018).

    CAS  Google Scholar 

  94. Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015).

    Google Scholar 

  95. Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).

    CAS  Google Scholar 

  96. Jung, S. H. et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018).

    CAS  Google Scholar 

  97. Koerver, R. et al. Redox-active cathode interphases in solid-state batteries. J. Mater. Chem. A 5, 22750–22760 (2017).

    CAS  Google Scholar 

  98. Shin, B. R. et al. Comparative Study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014).

    CAS  Google Scholar 

  99. Hakari, T. et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017).

    CAS  Google Scholar 

  100. Schafzahl, L. et al. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: structure, ion transport, and mechanical properties. Chem. Mater. 30, 3338–3345 (2018).

    CAS  Google Scholar 

  101. Dietrich, C. et al. Spectroscopic characterization of lithium thiophosphates by XPS and XAS — a model to help monitor interfacial reactions in all-solid-state batteries. Phys. Chem. Chem. Phys. 20, 20088–20095 (2018).

    CAS  Google Scholar 

  102. Lorger, S., Usiskin, R. E. & Maier, J. Transport and charge carrier chemistry in lithium sulfide. Adv. Funct. Mater. 29, 1807688 (2018).

    Google Scholar 

  103. Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    CAS  Google Scholar 

  104. Wu, X., El Kazzi, M. & Villevieille, C. Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S–P2S5 solid electrolyte. J. Electroceram. 38, 207–214 (2017).

    CAS  Google Scholar 

  105. Zhao, Y. et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259–283 (2019).

    CAS  Google Scholar 

  106. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2016).

    Google Scholar 

  107. Wang, M. & Sakamoto, J. Correlating the interface resistance and surface adhesion of the Li metal–solid electrolyte interface. J. Power Sources 377, 7–11 (2018).

    CAS  Google Scholar 

  108. McGrogan, F. P. et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

    Google Scholar 

  109. Bucci, G., Swamy, T., Chiang, Y.-M. & Carter, W. C. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A 5, 19422–19430 (2017).

    CAS  Google Scholar 

  110. Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).

    CAS  Google Scholar 

  111. Bo, S.-H., Wang, Y. & Ceder, G. Structural and Na-ion conduction characteristics of Na3PSxSe4−x. J. Mater. Chem. A 4, 9044–9053 (2016).

    CAS  Google Scholar 

  112. Geiger, C. A. et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50, 1089–1097 (2011).

    CAS  Google Scholar 

  113. Boulineau, S., Courty, M., Tarascon, J. M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012).

    CAS  Google Scholar 

  114. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Google Scholar 

  115. Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

    CAS  Google Scholar 

  116. Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors. J. Power Sources 352, 156–164 (2017).

    CAS  Google Scholar 

  117. Delaizir, G. et al. The stone age revisited: building a monolithic inorganic lithium-ion battery. Adv. Funct. Mater. 22, 2140–2147 (2012).

    CAS  Google Scholar 

  118. Schnell, J. et al. All-solid-state lithium-ion and lithium metal batteries — paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

    CAS  Google Scholar 

  119. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    CAS  Google Scholar 

  120. Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

    CAS  Google Scholar 

  121. Wang, D. et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 4954–4961 (2019).

    CAS  Google Scholar 

  122. Wang, H., Hood, Z. D., Xia, Y. & Liang, C. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J. Mater. Chem. A 4, 8091–8096 (2016).

    CAS  Google Scholar 

  123. Ates, T., Keller, M., Kulisch, J., Adermann, T. & Passerini, S. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2018).

    Google Scholar 

  124. Finsterbusch, M. et al. High Capacity garnet-based all-solid-state lithium batteries: fabrication and 3D-microstructure resolved modeling. ACS Appl. Mater. Interfaces 10, 22329–22339 (2018).

    CAS  Google Scholar 

  125. Matsuda, R., Hirabara, E., Phuc, N. H. H., Muto, H. & Matsuda, A. Composite cathode of NCM particles and Li3PS4–LiI electrolytes prepared using the SEED method for all-solid-state lithium batteries. IOP Conf. Ser. Mater. Sci. Eng. 429, 012033 (2018).

    Google Scholar 

  126. Hood, Z. D., Wang, H., Samuthira Pandian, A., Keum, J. K. & Liang, C. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 138, 1768–1771 (2016).

    CAS  Google Scholar 

  127. Kim, T. W., Park, K. H., Choi, Y. E., Lee, J. Y. & Jung, Y. S. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018).

    CAS  Google Scholar 

  128. Sharafi, A. et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017).

    CAS  Google Scholar 

  129. Groh, M. F. et al. Interface instability in LiFePO4–Li3+xP1-xSixO4 all-solid-state batteries. Chem. Mater. 30, 5886–5895 (2018).

    CAS  Google Scholar 

  130. Wu, X., Villevieille, C., Novák, P. & El Kazzi, M. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 20, 11123–11129 (2018).

    CAS  Google Scholar 

  131. Chen, K. et al. Morphological effect on reaction distribution influenced by binder materials in composite electrodes for sheet-type all-solid-state lithium-ion batteries with the sulfide-based solid electrolyte. J. Phys. Chem. C 123, 3292–3298 (2019).

    CAS  Google Scholar 

  132. Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

    CAS  Google Scholar 

  133. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    CAS  Google Scholar 

  134. Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).

    CAS  Google Scholar 

  135. Wang, C. et al. In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J. Am. Chem. Soc. 139, 14257–14264 (2017).

    CAS  Google Scholar 

  136. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  137. Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

    CAS  Google Scholar 

  138. Cheng, T., Merinov, B. V., Morozov, S. & Goddard, W. A. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2, 1454–1459 (2017).

    CAS  Google Scholar 

  139. Schnell, J. et al. Prospects on production technologies and manufacturing cost of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019).

    CAS  Google Scholar 

  140. De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979).

    Google Scholar 

  141. Scrosati, B. & Butherus, A. D. Electrochemical Properties of RbAg4I5 Solid Electrolyte. J. Electrochem. Soc. 119, 128–133 (1972).

    CAS  Google Scholar 

  142. Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

    CAS  Google Scholar 

  143. Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 296, 842–847 (2019).

    CAS  Google Scholar 

  144. Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).

    CAS  Google Scholar 

  145. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Google Scholar 

  146. Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

    Google Scholar 

  147. Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

    CAS  Google Scholar 

  148. Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J. C. & Viswanathan, V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996–1006 (2018).

    CAS  Google Scholar 

  149. Marbella, L. E. et al. 7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries. Chem. Mater. 31, 2762–2769 (2019).

    CAS  Google Scholar 

  150. Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).

    CAS  Google Scholar 

  151. Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

    Google Scholar 

Download references

Acknowledgements

T.F. acknowledges the Alistore ERI (http://www.alistore.eu/) and CNRS for their financial support in the form of a joint PhD scholarship between Amiens (France) and Bath (UK). P.C. is grateful to the Ramsey Memorial Trust and the University of Bath for the provision of his Ramsey Fellowship. M.S.I. and J.A.D. gratefully acknowledge the EPSRC Programme Grant (EP/M009521/1). The authors are grateful to D. Efremidis for help with the graphical design for Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

T.F., P.C. and J.A.D. carried out the literature review and T.F. drafted the manuscript. All authors contributed to the analysis, discussion and revisions leading to the final version of the manuscript.

Corresponding authors

Correspondence to Theodosios Famprikis, M. Saiful Islam or Christian Masquelier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Famprikis, T., Canepa, P., Dawson, J.A. et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0431-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing