Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The direction of theta and alpha travelling waves modulates human memory processing

Abstract

To support a range of behaviours, the brain must flexibly coordinate neural activity across widespread brain regions. One potential mechanism for this coordination is a travelling wave, in which a neural oscillation propagates across the brain while organizing the order and timing of activity across regions. Although travelling waves are present across the brain in various species, their potential functional relevance has remained unknown. Here, using rare direct human brain recordings, we demonstrate a distinct functional role for travelling waves of theta- and alpha-band (2–13 Hz) oscillations in the cortex. Travelling waves propagate in different directions during separate cognitive processes. In episodic memory, travelling waves tended to propagate in a posterior-to-anterior direction during successful memory encoding and in an anterior-to-posterior direction during recall. Because travelling waves of oscillations correspond to local neuronal spiking, these patterns indicate that rhythmic pulses of activity move across the brain in different directions for separate behaviours. More broadly, our results suggest a fundamental role for travelling waves and oscillations in dynamically coordinating neural connectivity, by flexibly organizing the timing and directionality of network interactions across the cortex to support cognition and behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example TW at 8.9 Hz in patient 34’s left hemisphere.
Fig. 2: Changes in TW direction across memory encoding and recall.
Fig. 3: Example participants where TWs varied in propagation direction with memory processing.
Fig. 4: Population analysis of TW direction shifts during memory encoding and recall.

Similar content being viewed by others

Data availability

The raw electrophysiological data used in this study are available upon request at https://memory.psych.upenn.edu/Data_Request.

Code availability

The custom code and analyses are available at https://github.com/umarmohan/freerecall_travelingwaves.

References

  1. Ermentrout, G. B. & Kleinfeld, D. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29, 33–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Muller, L., Chavane, Frédéric, Reynolds, J. & Sejnowski, T. J. Cortical travelling waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19, 255–268 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Davis, Z. W., Muller, L., Martinez-Trujillo, J., Sejnowski, T. & Reynolds, J. H. Spontaneous travelling cortical waves gate perception in behaving primates. Nature 587, 432–436 (2020).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  5. Benucci, A., Frazor, R. A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hamid, A. A., Frank, M. J. & Moore, C. I. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 184, 2733–2749 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  7. HernĂĄndez-PĂŠrez, J. JesĂşs, Cooper, K. W. & Newman, E. L. Medial entorhinal cortex activates in a traveling wave in the rat. eLife 9, e52289 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bahramisharif, A. et al. Propagating neocortical gamma bursts are coordinated by traveling alpha waves. J. Neurosci. 33, 18849–18854 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhang, H., Watrous, A. J., Patel, A. & Jacobs, J. Theta and alpha oscillations are traveling waves in the human neocortex. Neuron 98, 1269–1281.e4 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Alexander, D. M. et al. Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals. NeuroImage 73, 95–112 (2013).

    Article  PubMed  Google Scholar 

  11. Sato, T. K., Nauhaus, I. & Carandini, M. Traveling waves in visual cortex. Neuron 75, 218–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Adrian, E. D. & Matthews, B. H. C. The Berger rhythm: potential changes from the occipital lobes in man. Brain 57, 355–385 (1934).

    Article  Google Scholar 

  13. Nauhaus, I., Busse, L., Carandini, M. & Ringach, D. L. Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci. 12, 70–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Muller, L., Reynaud, A., Chavane, F. & Destexhe, A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014).

    Article  ADS  PubMed  Google Scholar 

  15. Muller, L. et al. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. eLife 5, e17267 (2016).

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  16. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Takahashi, K. et al. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nat. Commun. 6, 7169 (2015).

    Article  ADS  PubMed  Google Scholar 

  18. Roberts, J. A. et al. Metastable brain waves. Nat. Commun. 10, 1056 (2019).

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  19. Bhattacharya, S., Cauchois, M. B. L., Iglesias, P. A. & Chen, Z. S. The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves. Sci. Rep. 11, 14359 (2021).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kopell, N. J., Gritton, H. J., Whittington, M. A. & Kramer, M. A. Beyond the connectome: the dynome. Neuron 83, 1319–1328 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Alamia, A. & VanRullen, R. Alpha oscillations and traveling waves: signatures of predictive coding? PLoS Biol. 17, e3000487 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Pang, Z., Alamia, A. & VanRullen, R. Turning the stimulus on and off changes the direction of Îą traveling waves. eNeuro 7, ENEURO.0218-20.2020 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Alamia, A., Terral, L., d’Ambra, M. R. & Van Rullen, R. Distinct roles of forward and backward alpha-band waves in spatial visual attention. eLife 12, e85035 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Engel, A., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Linde-Domingo, J., Treder, M. S., KerrĂŠn, C. & Wimber, M. Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nat. Commun. 10, 179 (2019).

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  28. Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Burke, J. F. et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J. Neurosci. 33, 292–304 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fisher, N. I. Statistical Analysis of Circular Data (Cambridge Univ. Press, 1993).

  31. Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Polyn, S. M., Norman, K. A. & Kahana, M. J. A context maintenance and retrieval model of organizational processes in free recall. Psychol. Rev. 116, 129–156 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Burke, J. F. et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. NeuroImage 85, 834–843 (2014).

    Article  PubMed  Google Scholar 

  34. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-neuron activity in humans. J. Neurosci. 27, 3839–3844 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based communication in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Heitmann, S., Boonstra, T. & Breakspear, M. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex. PLoS Comput. Biol. 9, e1003260 (2013).

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  39. Sato, N. Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network. Sci. Rep. 12, 334 (2022).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sherfey, J., Ardid, S., Miller, E. K., Hasselmo, M. E. & Kopell, N. J. Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. Neurobiol. Learn. Mem. 173, 107228 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Girard, P., Hupé, J. M. & Bullier, J. Feedforward and feedback connections between areas v1 and v2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85, 1328–1331 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. González-Burgos, G., Barrionuevo, G. & Lewis, D. A. Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb. Cortex 10, 82–92 (2000).

    Article  PubMed  Google Scholar 

  43. Chiang, Chia-Chu, Shivacharan, R. S., Wei, X., Gonzalez-Reyes, L. E. & Durand, D. M. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling. J. Physiol. 597, 249–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kleen, J. K. et al. Bidirectional propagation of low frequency oscillations over the human hippocampal surface. Nat. Commun. 12, 2764 (2021).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  45. Heitmann, S., Gong, P. & Breakspear, M. A computational role for bistability and traveling waves in motor cortex. Front. Comput. Neurosci. 6, 67 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  46. Zabeh, E., Foley, N. C., Jacobs, J. & Gottlieb, J. P. Beta traveling waves in monkey frontal and parietal areas encode recent reward history. Nat. Commun. 14, 5428 (2023).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  47. Place, R., Farovik, A., Brockmann, M. & Eichenbaum, H. Bidirectional prefrontal–hippocampal interactions support context-guided memory. Nat. Neurosci. 19, 992–994 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  50. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    Article  PubMed  Google Scholar 

  52. Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Buffalo, E. A., Fries, P., Landman, R., Liang, H. & Desimone, R. A backward progression of attentional effects in the ventral stream. Proc. Natl Acad. Sci. USA 107, 361–365 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Friston, K. Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211 (2008).

    Article  ADS  MathSciNet  PubMed Central  PubMed  Google Scholar 

  56. Rubino, D., Robbins, K. A. & Hatsopoulos, N. G. Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Balasubramanian, K. et al. Propagating motor cortical dynamics facilitate movement initiation. Neuron 106, 526–536 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Bhattacharya, S., Brincat, S. L., Lundqvist, M. & Miller, E. K. Traveling waves in the prefrontal cortex during working memory. PLoS Comput. Biol. 18, e1009827 (2022).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  59. Li, J. et al. Anterior–posterior hippocampal dynamics support working memory processing. J. Neurosci. 42, 443–453 (2021).

    Article  PubMed  Google Scholar 

  60. Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J. Neurosci. 17, 1179–1196 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Muller, L. & Destexhe, A. Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. J. Physiol. Paris 106, 222–238 (2012).

    Article  PubMed  Google Scholar 

  63. Halgren, M. et al. The generation and propagation of the human alpha rhythm. Proc. Natl Acad. Sci. USA 116, 23772–23782 (2019).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  64. Breakspear, M., Heitmann, S. & Daffertshofer, A. Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Barzegaran, E. & Plomp, G. Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy. PLoS Biol. 20, e3001534 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. King, J.-R. & Wyart, V. The human brain encodes a chronicle of visual events at each instant of time through the multiplexing of traveling waves. J. Neurosci. 41, 7224–7233 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr. Biol. 23, 2273–2278 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Sauseng, P. et al. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hanslmayr, S. et al. The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG–fMRI study. J. Neurosci. 31, 15674–15680 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Busch, N. A., Dubois, J. & Van Rullen, R. The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M. & Ro, T. To see or not to see: prestimulus α phase predicts visual awareness. J. Neurosci. 29, 2725–2732 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Dugué, L., Marque, P. & Van Rullen, R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  74. Patten, T. M., Rennie, C. J., Robinson, P. A. & Gong, P. Human cortical traveling waves: dynamical properties and correlations with responses. PLoS ONE 7, e38392 (2012).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  75. Lozano-Soldevilla, D. & Van Rullen, R. The hidden spatial dimension of alpha: 10-Hz perceptual echoes propagate as periodic traveling waves in the human brain. Cell Rep. 26, 374–380 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Stolk, A. et al. Electrocorticographic dissociation of alpha and beta rhythmic activity in the human sensorimotor system. eLife 8, e48065 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Gazzaley, A. & Nobre, A. C. Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16, 129–135 (2012).

    Article  PubMed  Google Scholar 

  80. Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J. & Nobre, A. C. Inter- and intra-individual variability in alpha peak frequency. NeuroImage 92, 46–55 (2014).

    Article  PubMed  Google Scholar 

  81. Mahjoory, K., Schoffelen, J.-M., Keitel, A. & Gross, J. The frequency gradient of human resting-state brain oscillations follows cortical hierarchies. eLife 9, e53715 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  84. Fischl, B. R., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Khodagholy, D. et al. Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  88. Boto, E. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. NeuroImage 149, 404–414 (2017).

    Article  PubMed  Google Scholar 

  89. Said, C. P., Egan, R. D., Minshew, N. J., Behrmann, M. & Heeger, D. J. Normal binocular rivalry in autism: implications for the excitation/inhibition imbalance hypothesis. Vis. Res. 77, 59–66 (2013).

    Article  PubMed  Google Scholar 

  90. Smith, E. H. et al. Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges. eLife 11, e73541 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (G. Thieme, 1988).

  92. Das, A. et al. Spontaneous neuronal oscillations in the human insula are hierarchically organized traveling waves. eLife 11, e76702 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Berens, P. Circstat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article  Google Scholar 

  94. Kempter, R., Leibold, C., Buzsáki, G., Diba, K. & Schmidt, R. Quantifying circular–linear associations: hippocampal phase precession. J. Neurosci. Methods 207, 113–124 (2012).

    Article  PubMed  Google Scholar 

  95. Masseran, N., Razali, A. M., Ibrahim, K. & Latif, M. T. Fitting a mixture of von Mises distributions in order to model data on wind direction in peninsular Malaysia. Energy Convers. Manage. 72, 94–102 (2013).

    Article  Google Scholar 

  96. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article  PubMed  Google Scholar 

  97. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  PubMed  Google Scholar 

  98. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  Google Scholar 

  99. Nilearn contributors. nilearn. GitHub https://github.com/nilearn/nilearn (2007–2023).

  100. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients for participating in our study. This work was supported by the DARPA Restoring Active Memory programme (Cooperative Agreement No. N66001-14-2-4032); National Institutes of Health Grant Nos R01-MH104606, U01-NS113198 and RF1-MH114276; and the National Science Foundation (to J.J.). The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US government. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank J. Chapeton, A. Das, T. Donoghue, M. Hermiller, L. Kunz, S. Favila, J. Gottlieb, B. Lega, S. Qasim and E. Zabeh for providing helpful critical feedback on the manuscript. We thank M. Kahana, P. Wanda and J. Rudoler for providing data and technical support.

Author information

Authors and Affiliations

Authors

Contributions

U.R.M., H.Z., B.E. and J.J. designed and implemented the data analyses. U.R.M., B.E. and J.J. wrote the manuscript.

Corresponding author

Correspondence to Joshua Jacobs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Ziv Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Exclusion of trials with potential inaccurate measurement of propagation direction due to spatial aliasing.

(A) Adequate spatial sampling when low-frequency oscillations propagate propagate across 3 widely spaced electrodes(left). Inadequate spatial sampling for higher-frequency oscillations propagating across 3 electrodes with the same spacing (middle). Arrows indicate two possible propagation direction measurements. Higher density electrode spacing would disambiguate the true propagation direction (right). (B) Combinations of oscillation frequencies and phase velocities where there is adequate and inadequate spatial sampling with 1 cm electrode spacing, determined by whether half the spatial wavelength of a propagating oscillation is less than 1 cm, shown in green and red, respectively. (C) Example 1 s of a trial with a traveling wave propagating in space across five adjacent electrodes of an alpha oscillation cluster in patient 34. (D) Time-lagged cross correlation for entire trial measured between adjacent electrodes (a) and (b) in oscillation cluster. Time of maximum coupling measured at -11 ms indicated by red star showing signal on electrode (b) leads electrode (a). (E) Correlation between time differences between electrodes (a) and (b) measured via phase differences with the time-lag measured from cross-correlation for unsuccessful encoding trial son the left and successful encoding trials on the right. Strong correlation along unity lines indicates alignment between the two measurements such that no trials were susceptible to spatial aliasing. (F) Correlation between phase-based time differences and correlation-based time differences for a beta oscillation cluster with 18% of trials showing an inconsistency between the two methods. Red time lags measured via cross-correlation indicate that the true lag between the signals on those trials was approximately a cycle forward or backwards indicating the potential for spatial aliasing when measuring only using phase. (G) When excluding trials with these inconsistencies across all clusters in the dataset, approximately 83% of trials were not susceptible to spatial aliasing (right) across all oscillation clusters (n=421). Error bars denote ± 1 SEM. (H) Percent of trials in which the correct direction could be measured using phase differences when perfect sinusoidal signals were shifted across five simulated electrodes (n=421). (I) Percent of trials in which the correct direction could be measured using phase differences when imperfect eeg signals were shifted across five simulated electrodes (n=421). (J) Percent of trials in which the correct direction could be measured using phase differences when real eeg signals were shifted across five simulated electrodes after excluding trials that were susceptible to spatial aliasing (n=421).

Extended Data Fig. 2 Narrowband power at oscillation clusters that showed traveling waves in the episodic memory task.

(A) Mean normalized narrowband power centered around each oscillation cluster’s peak frequency across all 93 participants, calculated with the log-transformed amplitude of the Hilbert transform prior to selecting trials with sufficient oscillatory power, wave strength, and no potential for spatial aliasing. (B) Mean normalized narrowband power for oscillation clusters that showed traveling waves averaged over time in all 93 participants, separately calculated during time periods when TWs moved posteriorly and anteriorly, during successful and unsuccessful encoding trials. There were no significant differences in mean power across the clusters that showed posterior and anterior propagation (all p’s > 0.05, two-sided t-test). Error bars denote ± 1 SEM.

Extended Data Fig. 3 Example data showing the absence of traveling waves.

(A) Example trial where a traveling wave was not present on a cluster that often showed 8.9-Hz oscillations that propagated as TWs on other trials. Filtered signals from five channels during one trial of memory task from participant 34. (B) Timecourse of adjusted τ2 across the cluster used to measure statistical reliability of circular-linear models fit to the phase gradients. (C) Brain map with arrows indicating, for each electrode, the calculated local propagation direction. Arrow color indicates relative phase at time indicated by black line in A. (D-F) Same as (A-C) for additional example trial.

Extended Data Fig. 4 Characteristics of cortical traveling waves during encoding and recall of episodic memory task.

(A) Histogram of the peak oscillation frequencies for clusters with TWs. All green histograms are properties measured during encoding and blue during recall. (B) Histogram of the number of electrodes in each cluster. (C) Histogram of the counts of clusters per patient that showed TWs. Most participants had 2 to 4 clusters across different sets of grid and strip electrodes or groups of electrodes with oscillations at different peak frequencies. A few patients had 5 or more. Patients with many clusters often had multiple smaller clusters of 5-6 electrodes in different regions and hemispheres. (D) Distribution of the percentage of single trials that show reliable TWs for individual clusters. (E) Histogram of TW propagation phase velocities across clusters. Black line indicates median. (F) Histogram of TW spatial wavelength.

Extended Data Fig. 5 Examples of clusters that showed traveling waves with different types of directional propagation patterns.

Plots show example direction distribution for TWs we labeled as propagating in (A) unidirectional, (B) bidirectional, and (C) nondirectional fashions.

Extended Data Fig. 6 Population categorization of cluster direction patterns in episodic memory task.

(A) Percent of TW clusters in each oscillatory range identified as bidirectional, unidirectional, and nondirectional across all 93 participants. (B) Mean percent recall rates across 93 participants that showed a TW cluster with unidirectional, bidirectional, and nondirectional TW propagation, by oscillatory frequency band (linear mixed effects model, bidirectional vs. unidirectional clusters: p=0.062; bidirectional vs. nondirectional TW clusters:, p=0.002, Tukey contrast multiple comparisons test). Error bars denote ± 1 SEM. (*p < 0.05, * * p < 0.01, two-sided t-test). Overall, participants who showed bidirectional TW propagation showed a 5.8% higher rate of successful memory encoding compared to participants with unidirectional and multidirectional patterns, indicating that bidirectional TW propagation may be a feature of normal cognition.

Extended Data Fig. 7 Traveling waves in example participants who showed a link between TW direction and memory.

(A) Example traveling wave in patient 89 at 7.8 Hz; format of individual plots follows Fig. 3. (B) Example traveling wave frontal cortex of patient 130 at 10.8 Hz.

Extended Data Fig. 8 Direction distributions during memory encoding and recall.

(A) Distribution of clusters’ pre-dominant propagation directions for all theta TWs measured on oscillation clusters in the Frontal, Temporal, and Parietal/Occipital regions during memory encoding and recall at the timepoint of maximal memory-related effects. TW propagation directions were weighted by the proportion of trials with TWs propagating in each directions captured (see Methods). (B) Same as (A) for alpha-band TWs (C) Same as (A) for beta-band TWs.

Extended Data Fig. 9 Relation between TW directional shifts and memory processing.

(A) Normalized difference in the prevalence of TWs propagating in the preferred encoding direction versus the opposite direction for successful encoding relative to the cluster’s natural bidirecitonal split (averaged across word presentation intervals). Asterisks indicate specific regions and oscillatory bands where the normalized percent of TWs traveling in preferred encoding directions across clusters is significantly above a distribution of shuffled TW directions (p’s < 0.05, one-sided binomial tests against 0, Cluster counts in Suplementary Table 1). Error bars denote ± 1 SEM. (B) Normalized difference of TWs propagating in preferred encoding versus preferred recall direction averaged during 2 seconds prior to verbal recall. Asterisks indicate specific regions and oscillatory bands where the normalized percent of TWs traveling in preferred encoding directions across clusters is significantly below a distribution of shuffled TW directions (p’s < 0.05, one-sided binomial tests).

Extended Data Fig. 10 Hypothesized relations between traveling wave (TW) direction and memory processes.

When presented with a list of words during an episodic memory task, successful memory encoding more likely when waves propagated in the preferred encoding direction, as opposed to the opposite direction, characterized as the preferred recall direction. We hypothesize that preferred encoding and preferred recall TW propagation may reflect more general neural processes including feedforward and feedbackward cortical processing, respectively.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–3 and captions for Supplementary Videos 1 and 2.

Reporting Summary

Peer Review File

Supplementary Video 1

Example animation of a TW in patient 34 on a trial where memory encoding was successful (related to Fig. 2). The animation includes filtered signals during the trial, local propagation directions indicated on the brain map, a single arrow of mean direction across electrodes and the topography of TW phase over time. A single arrow indicating the mean direction across electrodes is visible when the wave is reliable.

Supplementary Video 2

Example TW on a trial where memory encoding was unsuccessful. The data are from patient 34. The video is in the same format as Supplementary Video 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, U.R., Zhang, H., Ermentrout, B. et al. The direction of theta and alpha travelling waves modulates human memory processing. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01838-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing