Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks

Abstract

Antarctica preserves Earth’s largest ice-sheet, which in response to climate warming, may lose ice mass and raise sea level by several metres. The ice-sheet bed exerts critical controls on dynamic mass loss through feedbacks between water and heat fluxes, topographic forcing, till deformation and basal sliding. Here we show that sedimentary basins may amplify critical feedbacks that are known to impact ice-sheet retreat dynamics. We create a high-resolution subglacial geology classification for Antarctica by applying a supervised machine-learning method to geophysical data, revealing the distribution of sedimentary basins. Hydro-mechanical numerical modelling demonstrates that during glacial retreat, where sedimentary basins exist, the groundwater discharge rate scales with the rate of ice unloading. Antarctica’s most dynamic ice streams, including Thwaites and Pine Island glaciers, possess sedimentary basins in their upper catchments. Enhanced groundwater discharge and its associated feedbacks are likely to amplify basal sliding and increase the vulnerability of these catchments to rapid ice retreat and enhanced dynamic mass loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current understanding of subglacial geology from outcrop, seismic studies and regional potential field interpretations.
Fig. 2: Sedimentary-basin likelihood map from RF classification.
Fig. 3: Sedimentary-basin likelihood map focusing on key ice-stream regions.
Fig. 4: Groundwater discharge through time for moderate to fast retreat rates.

Similar content being viewed by others

Data availability

The results of RF classification and hydro-mechanical modelling can be accessed at https://doi.org/10.5281/zenodo.6611940.

Code availability

The R notebook for RF classification can be accessed at https://doi.org/10.5281/zenodo.6611940. The code of CVEFM_Rift2D can be accessed in the supplementary material from the original paper32.

References

  1. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article  Google Scholar 

  2. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  3. Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Nat. Acad. Sci. USA 116, 1095–1103 (2019).

    Article  Google Scholar 

  4. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    Article  Google Scholar 

  5. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    Article  Google Scholar 

  6. Noble, T. L. et al. The sensitivity of the Antarctic ice sheet to a changing climate: past, present, and future. Rev. Geophys. https://doi.org/10.1029/2019RG000663 (2020).

  7. Koellner, S., Parizek, B. R., Alley, R. B., Muto, A. & Holschuh, N. The impact of spatially-variable basal properties on outlet glacier flow. Earth Planet. Sci. Lett. 515, 200–208 (2019).

    Article  Google Scholar 

  8. Bougamont, M. et al. Reactivation of Kamb Ice Stream tributaries triggers century‐scale reorganization of Siple Coast ice flow in West Antarctica. Geophys. Res. Lett. 42, 8471–8480 (2015).

    Article  Google Scholar 

  9. Krabbendam, M. & Glasser, N. F. Glacial erosion and bedrock properties in NW Scotland: abrasion and plucking, hardness and joint spacing. Geomorphology 130, 374–383 (2011).

    Article  Google Scholar 

  10. Breiman, L. Random forest. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  11. Kuhn, S., Cracknell, M. J. & Reading, A. M. Lithological mapping in the Central African Copper Belt using random forests and clustering: strategies for optimised results. Ore Geol. Rev. 112, 103015 (2019).

    Article  Google Scholar 

  12. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  Google Scholar 

  13. Scheinert, M. et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys. Res. Lett. 43, 600–610 (2016).

    Article  Google Scholar 

  14. Golynsky, A. V. et al. New magnetic anomaly map of the Antarctic. Geophys. Res. Lett. 45, 6437–6449 (2018).

    Article  Google Scholar 

  15. Aitken, A. R. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389 (2016).

    Article  Google Scholar 

  16. Ferraccioli, F. et al. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392 (2011).

    Article  Google Scholar 

  17. Evans, D., Phillips, E., Hiemstra, J. & Auton, C. Subglacial till: formation, sedimentary characteristics and classification. Earth Sci. Rev. 78, 115–176 (2006).

    Article  Google Scholar 

  18. Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article  Google Scholar 

  19. Muto, A. et al. Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth Planet. Sci. Lett. 507, 199–206 (2019).

    Article  Google Scholar 

  20. Gowan, E. J., Niu, L., Knorr, G. & Lohmann, G. Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models. Earth Syst. Sci. Data 11, 375–391 (2019).

    Article  Google Scholar 

  21. Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).

    Article  Google Scholar 

  22. Bell, R. E. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998).

    Article  Google Scholar 

  23. Bell, R. E. The role of subglacial water in ice-sheet mass balance. Nat. Geosci. 1, 297–304 (2008).

    Article  Google Scholar 

  24. Dow, C. F. et al. Dynamics of active subglacial lakes in Recovery Ice Stream. J. Geophys. Res. Earth Surf. 123, 837–850 (2018).

    Article  Google Scholar 

  25. Christoffersen, P. & Tulaczyk, S. Response of subglacial sediments to basal freeze‐on 1. Theory and comparison to observations from beneath the West Antarctic Ice Sheet. J. Geophys. Res. Solid Earth 108, 2222 (2003).

    Article  Google Scholar 

  26. Gooch, B. T., Young, D. A. & Blankenship, D. D. Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica. Geochem. Geophys. Geosyst. 17, 395–409 (2016).

    Article  Google Scholar 

  27. Siegert, M. J. et al. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geol. Soc. Spec. Pub. 461, 197–213 (2018).

    Article  Google Scholar 

  28. Bense, V. & Person, M. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J. Geophys. Res. Earth Surface 113, F04005 (2008).

    Article  Google Scholar 

  29. Flowers, G. E. & Clarke, G. K. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J. Geophys. Res. Solid Earth 107, 2287 (2002).

    Google Scholar 

  30. Boulton, G., Lunn, R., Vidstrand, P. & Zatsepin, S. Subglacial drainage by groundwater-channel coupling, and the origin of esker systems: part 1—glaciological observations. Quat. Sci. Rev. 26, 1067–1090 (2007).

    Article  Google Scholar 

  31. Le Brocq, A. M. et al. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic ice sheet. Nat. Geosci. 6, 945–948 (2013).

    Article  Google Scholar 

  32. Zhang, Y. et al. Hydromechanical impacts of Pleistocene glaciations on pore fluid pressure evolution, rock failure, and brine migration within sedimentary basins and the crystalline basement. Water Resour. Res. 54, 7577–7602 (2018).

    Article  Google Scholar 

  33. Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    Article  Google Scholar 

  34. Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).

    Article  Google Scholar 

  35. Joughin, I. et al. Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol. 55, 245–257 (2009).

    Article  Google Scholar 

  36. Siegert, M. J. et al. Subglacial controls on the flow of Institute Ice Stream, West Antarctica. Ann. Glaciol. 57, 19–24 (2016).

    Article  Google Scholar 

  37. Catania, G., Hulbe, C., Conway, H., Scambos, T. A. & Raymond, C. Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium. J. Glaciol. 58, 741–752 (2012).

    Article  Google Scholar 

  38. Golledge, N., Levy, R., McKay, R. & Naish, T. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    Article  Google Scholar 

  39. DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article  Google Scholar 

  40. Flament, T., Berthier, E. & Rémy, F. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models. Cryosphere 8, 673–687 (2014).

    Article  Google Scholar 

  41. Christoffersen, P., Bougamont, M., Carter, S. P., Fricker, H. A. & Tulaczyk, S. Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophys. Res. Lett. 41, 2003–2010 (2014).

    Article  Google Scholar 

  42. Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article  Google Scholar 

  43. Schroeder, D. M., Blankenship, D. D. & Young, D. A. Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc. Nat. Acad. Sci. USA 110, 12225–12228 (2013).

    Article  Google Scholar 

  44. Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E. & Anderson, J. B. Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica. Geophys. Res. Lett. 41, 7200–7208 (2014).

    Article  Google Scholar 

  45. Brisbourne, A. M. et al. Bed conditions of Pine Island Glacier, West Antarctica. J. Geophys. Res. Earth Surf. 122, 419–433 (2017).

    Article  Google Scholar 

  46. Parizek, B. et al. Dynamic (in) stability of Thwaites Glacier, West Antarctica. J. Geophys. Res. Earth Surf. 118, 638–655 (2013).

    Article  Google Scholar 

  47. Muto, A. et al. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: new results. Earth Planet. Sci. Lett. 433, 63–75 (2016).

    Article  Google Scholar 

  48. Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  Google Scholar 

  49. Wright, A. & Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24, 659 (2012).

    Article  Google Scholar 

  50. Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (CRC Press, 1984).

  51. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  52. Cracknell, M. J. & Reading, A. M. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 63, 22–33 (2014).

    Article  Google Scholar 

  53. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  Google Scholar 

  54. Mouginot, J., Rignot, E. & Scheuchl, B. Continent‐wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Morlighem for providing basal friction data. This research was supported by the Australian Research Council Special Research Initiative, Australian Centre for Excellence in Antarctic Science (project number SR200100008). L.L. was supported by China Scholarship Council–The University of Western Australia joint PhD scholarship (201806170054). M.D.L. was supported by ARC DECRA DE190100431 and ARC ITTC IC190100031. We thank M. Siegert for his constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.L. led the research; L.L., A.R.A.A. and M.D.L. conceived the scope and design of the research. L.L. and A.R.A.A. led the writing of the manuscript. L.L., A.R.A.A. and B.K. discussed and wrote the ice-sheet dynamics section. M.D.L. and A.R.A.A. advised L.L. in performing random-forest classification. A.R.A.A. advised L.L. in performing hydro-mechanical modelling. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Calvin Shackleton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Rate of grounding line migration rate versus rate of ice thinning.

The black dots show the estimated continental wide grounding line retreat rate versus ice thinning rate33. The blue crosses mark the grounding line retreat rate that we used in hydro-mechanical modelling. Detail of the estimation of grounding line migration and ice thinning rate are shown in Supplementary Information 2.1.2.

Extended Data Fig. 2 Relationship between sedimentary basin likelihood with the current ice thinning rate and ice velocity in Antarctica.

a, Sedimentary basin likelihood with overlying ice thinning rate as estimated by satellite laser altimetry data53. b, Sedimentary basin likelihood with overlying ice-sheet surface velocity54.

Supplementary information

Supplementary Information

Supplementary Sections 1 and 2.

Supplementary Video 1

Vertical water flux during the glacier cycle (base permeability caseː κz = 10−15 m2).

Supplementary Video 2

Vertical water flux during the glacier cycle (high permeability case: κz = 10−13 m2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Aitken, A.R.A., Lindsay, M.D. et al. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks. Nat. Geosci. 15, 645–650 (2022). https://doi.org/10.1038/s41561-022-00992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00992-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing