Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dry corridors opened by fire and low CO2 in Amazonian rainforest during the Last Glacial Maximum

Abstract

The dynamics of Amazonian rainforest over long timescales connect closely to its rich biodiversity. While palaeoecological studies have suggested its stability through the Pleistocene, palaeontological evidence indicates the past existence of major expansions of savannah and grassland. Here we present integrated modelling evidence for a grassier Neotropics during the Last Glacial Maximum, congruent with palaeoecological and biological studies. Vegetation reconstructions were generated using the land processes and exchanges model, driven by model reconstructions of Last Glacial Maximum climate, and compared with palynological data. A factorial experiment was performed to quantify the impacts of fire and low CO2 on vegetation and model–data agreement. Fire and low CO2 both individually and interactively induced widespread expansion of savannah and grassland biomes while improving model–data agreement. The interactive effects of fire and low CO2 induced the greatest ‘savannafication’ of the Neotropics, providing integrated evidence for a number of biogeographically relevant open vegetation formations, including two dry corridors (paths of savannah and grassland through and around Amazonia that facilitated major dispersal and evolutionary diversification events). Our results show a bimodality in tree cover that was driven by fire and further enhanced by ‘CO2 deprivation’, which suggests biome instability in this region of climate space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LPX model reconstructions of LGM biome distributions for four scenarios based on the average output from four driving AOGCM LGM climate reconstructions (ensemble experiment).
Fig. 2: Statistical comparison between model reconstructions and pollen cores.
Fig. 3: Identification of reconstructed biogeographical formations in the ensemble fire-and-low-CO2 scenario.
Fig. 4: The effects of fire and low CO2 on climate–vegetation relationships.
Fig. 5: The individual and interactive effects of fire and CO2 on tree cover.
Fig. 6: The effects of fire and low CO2 on the bimodality of tree cover.

Similar content being viewed by others

Data availability

The model outputs from the factorial experiments that support our findings are available at the National Centers for Environmental Information repository (https://doi.org/10.25921/7zjs-0t15).

Code availability

The code for the version of LPX used in this study is available at the Zenodo repository (https://doi.org/10.5281/zenodo.4757522).

References

  1. Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563 (2000).

    Article  Google Scholar 

  2. Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).

    Article  Google Scholar 

  3. Carnaval, A. C. & Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 35, 1187–1201 (2008).

    Article  Google Scholar 

  4. Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C. & Bush, M. B. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 85 (1996).

    Article  Google Scholar 

  5. Burbridge, R. E., Mayle, F. E. & Killeen, T. J. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat. Res. 61, 215–230 (2004).

    Article  Google Scholar 

  6. Bush, M. B. & Silman, M. R. Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. J. Quat. Sci. 19, 677–684 (2004).

    Article  Google Scholar 

  7. Cowling, S. A., Maslin, M. A. & Sykes, M. T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat. Res. 55, 140–149 (2001).

    Article  Google Scholar 

  8. Claussen, M., Selent, K., Brovkin, V., Raddatz, T. & Gayler, V. Impact of CO2 and climate on Last Glacial Maximum vegetation—a factor separation. Biogeosciences 10, 3593–3604 (2013).

    Article  Google Scholar 

  9. O’ishi, R. & Abe-Ouchi, A. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum. Clim. Past 9, 1571–1587 (2013).

    Article  Google Scholar 

  10. Hopcroft, P. O. & Valdes, P. J. Last Glacial Maximum constraints on the Earth system model HadGEM2-ES. Clim. Dyn. 45, 1657–1672 (2015).

    Article  Google Scholar 

  11. Hermanowski, B., da Costa, M. L. & Behling, H. Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quat. Res. 77, 138–148 (2012).

    Article  Google Scholar 

  12. Fontes, D. et al. Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quat. Sci. Rev. 173, 161–180 (2017).

    Article  Google Scholar 

  13. D’Apolito, C., Absy, M. L. & Latrubesse, E. M. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat. Sci. Rev. 76, 140–155 (2013).

    Article  Google Scholar 

  14. AdrianQuijada-Mascareñas, J. et al. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. J. Biogeogr. 34, 1296–1312 (2007).

    Article  Google Scholar 

  15. Prado, D. E. & Gibbs, P. E. Patterns of species distributions in the dry seasonal forests of South America. Ann. MO Bot. Gard. 80, 902–927 (1993).

    Article  Google Scholar 

  16. Cardoso Da Silva, J. M. & Bates, J. M. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. AIBS Bull. 52, 225–234 (2002).

    Google Scholar 

  17. da Silva, J. M. C. Biogeographic analysis of the South American Cerrado avifauna. Steenstrupia 21, 49–67 (1995).

    Google Scholar 

  18. Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W. & Costa, G. C. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695–1706 (2012).

    Article  Google Scholar 

  19. Wuster, W. et al. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14, 1095–1108 (2005).

    Article  Google Scholar 

  20. Prentice, I. C. et al. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25, GB3005 (2011).

    Article  Google Scholar 

  21. Colinvaux, P. A., De Oliveira, P. E. & Bush, M. B. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat. Sci. Rev. 19, 141–169 (2000).

    Article  Google Scholar 

  22. Bush, M. B. Climate science: the resilience of Amazonian forests. Nature 541, 167 (2017).

    Article  Google Scholar 

  23. Mayle, F. E., Beerling, D. J., Gosling, W. D. & Bush, M. B. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the Last Glacial Maximum. Philos. Trans. R. Soc. Lond. B 359, 499–514 (2004).

    Article  Google Scholar 

  24. Costa, G. C. et al. Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob. Ecol. Biogeogr. 27, 285–297 (2018).

    Article  Google Scholar 

  25. Wilson, J. B. & Agnew, A. D. in Advances in Ecological Research Vol. 23 (eds Begon, M. & Fitter, A. H.) 263–336 (Academic Press, 1992).

  26. Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New. Phytol. 201, 908–915 (2014).

    Article  Google Scholar 

  27. Aleixo, A. & de Fátima Rossetti, D. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? J. Ornithol. 148, 443–453 (2007).

    Article  Google Scholar 

  28. Pennington, R. T. & Dick, C. W. Diversification of the Amazonian Flora and Its Relation to Key Geological and Environmental Events: A Molecular Perspective (Blackwell, 2010).

  29. Leite, R. N. & Rogers, D. S. Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives. Org. Divers. Evol. 13, 639–664 (2013).

    Article  Google Scholar 

  30. Haffer, J. R. Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers. Conserv. 6, 451–476 (1997).

    Article  Google Scholar 

  31. Garzón-Orduña, I. J., Benetti-Longhini, J. E. & Brower, A. V. Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. J. Biogeogr. 41, 1631–1638 (2014).

    Article  Google Scholar 

  32. Smith, B. T., Amei, A. & Klicka, J. Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proc. R. Soc. B 279, 3520–3526 (2012).

    Article  Google Scholar 

  33. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    Article  Google Scholar 

  34. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  35. McMahon, S. M. et al. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 26, 249–259 (2011).

    Article  Google Scholar 

  36. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  37. Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991 (2010).

    Article  Google Scholar 

  38. Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18, 357–364 (1995).

    Article  Google Scholar 

  39. Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels Research Paper INT-115 (USDA, 1972).

  40. Prentice, I. C., Harrison, S. P. & Bartlein, P. J. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 189, 988–998 (2011).

    Article  Google Scholar 

  41. Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340 (2013).

    Article  Google Scholar 

  42. Kelley, D. I., Harrison, S. P. & Prentice, I. C. Improved simulation of fire–vegetation interactions in the land surface processes and exchanges dynamic global vegetation model (LPX-Mv1). Geosci. Model Dev. 7, 2411–2433 (2014).

    Article  Google Scholar 

  43. Kelley, D. I. & Harrison, S. P. Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environ. Res. Lett. 9, 104015 (2014).

    Article  Google Scholar 

  44. Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Climate 3, 261–277 (2007).

    Google Scholar 

  45. Martin Calvo, M. & Prentice, I. C. Effects of fire and CO2 on biogeography and primary production in glacial and modern climates. New Phytol. 208, 987–994 (2015).

    Article  Google Scholar 

  46. Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate 3, 279–296 (2007).

    Google Scholar 

  47. Harris, I. P. D. J., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  48. Mayle, F. E., Burn, M. J., Power, M. & Urrego, D. H. in Past Climate Variability in South America and Surrounding Regions (eds Vimeux, F. et al.) 89–112 (Springer, 2009).

  49. Marchant, R. et al. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate 5, 725–767 (2009).

    Google Scholar 

  50. Stein, U. & Alpert, P. I. N. H. A. S. Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993).

    Article  Google Scholar 

  51. Argollo, J. & Mourguiart, P. Late Quaternary climate history of the Bolivian Altiplano. Quat. Int. 72, 37–51 (2000).

    Article  Google Scholar 

  52. Watts, W. A. & Bradbury, J. P. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17, 56–70 (1982).

    Article  Google Scholar 

  53. del Socorro Lozano-Garcia, M. & Ortega-Guerrero, B. Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 177–191 (1994).

    Article  Google Scholar 

  54. del Socorro Lozano-García, M. & Ortega-Guerrero, B. Late Quaternary environmental changes of the central part of the Basin of Mexico; correlation between Texcoco and Chalco basins. Rev. Palaeobot. Palynol. 99, 77–93 (1998).

    Article  Google Scholar 

  55. Leyden, B. W. Guatemalan forest synthesis after Pleistocene aridity. Proc. Natl Acad. Sci. USA 81, 4856–4859 (1984).

    Article  Google Scholar 

  56. Piperno, D. R., Bush, M. B. & Colinvaux, P. A. Paleoecological perspectives on human adaptation in central Panama. I. Pleistocene. Geoarchaeology 6, 201–226 (1991).

    Article  Google Scholar 

  57. Hooghiemstra, H., Cleef, A. M., Noldus, C. W. & Kappelle, M. Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area (Cordillera de Talamanca, Costa Rica). J. Quat. Sci. 7, 205–225 (1992).

    Article  Google Scholar 

  58. van der Hammen, T. & Hooghiemstra, H. Interglacial–glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Glob. Planet. Change 36, 181–199 (2003).

    Article  Google Scholar 

  59. Graf, K. Pollendiagramme aus den Anden: Eine Synthese zur Klimageschichte und Vegetationsentwicklung seit der letzten Eiszeit (Universität Zürich-Irchel-Geographisches Institut, 1992).

  60. Van Geel, B. & Van der Hammen, T. Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 14, 9–92 (1973).

    Article  Google Scholar 

  61. Behling, H. & Hooghiemstra, H. Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. J. Paleolimnol. 21, 461–476 (1999).

    Article  Google Scholar 

  62. Wille, M., Negret, J. A. & Hooghiemstra, H. Paleoenvironmental history of the Popayán area since 27 000 yr BP at Timbio, southern Colombia. Rev. Palaeobot. Palynol. 109, 45–63 (2000).

    Article  Google Scholar 

  63. Oliveira, P. E. D. A Palynological Record of Late Quaternary Vegetational and Climatic Change in Southeastern Brazil. PhD dissertation, The Ohio State Univ. (1992).

  64. Ledru, M. P. et al. Late-glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quat. Res. 55, 47–56 (2001).

    Article  Google Scholar 

  65. Behling, H., Arz, H. W., Pätzold, J. & Wefer, G. Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeogr. Palaeoclimatol. Palaeoecol. 179, 227–243 (2002).

    Article  Google Scholar 

  66. Van der Hammen, T. & González, E. Upper Pleistocene and Holocene climate and vegetation of the ‘Sabana de Bogota’ (Colombia, South America). Leidse Geologische Mededelingen 25, 261–315 (1960).

    Google Scholar 

  67. Guimarães, J. T. F. et al. Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene 27, 1055–1066 (2017).

    Article  Google Scholar 

  68. Van der Hammen, T. & Absy, M. L. Amazonia during the last glacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 247–261 (1994).

    Article  Google Scholar 

  69. Hansen, B. C. S. et al. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 79–108 (2003).

    Article  Google Scholar 

  70. Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).

    Article  Google Scholar 

  71. Urrego, D. H., Bush, M. B. & Silman, M. R. A long history of cloud and forest migration from Lake Consuelo, Peru. Quat. Res. 73, 364–373 (2010).

    Article  Google Scholar 

  72. Barberi, M., Salgado-Labouriau, M. L. & Suguio, K. Paleovegetation and paleoclimate of ‘Vereda de Águas Emendadas’, central Brazil. J. South Am. Earth Sci. 13, 241–254 (2000).

    Article  Google Scholar 

  73. Mourguiart, P., Argollo, J. & Wirrmann, D. In Climas Cuaternarios en America del Sur = Quaternary Climates of South America. 157–171 (ORSTOM, 1995).

  74. Mourguiart, P. & Ledru, M. P. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 195–198 (2003).

    Article  Google Scholar 

  75. Salgado-Labouriau, M. L., Barberi, M., Ferraz-Vicentini, K. R. & Parizzi, M. G. A dry climatic event during the late Quaternary of tropical Brazil. Rev. Palaeobot. Palynol. 99, 115–129 (1998).

    Article  Google Scholar 

  76. Ledru, M. P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).

    Article  Google Scholar 

  77. Chepstow-Lusty, A. et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quat. Res. 63, 90–98 (2005).

    Article  Google Scholar 

  78. Behling, H. & Lichte, M. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quat. Res. 48, 348–358 (1997).

    Article  Google Scholar 

  79. Behling, H. South and southeast Brazilian grasslands during late Quaternary times: a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 19–27 (2002).

    Article  Google Scholar 

  80. Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 407–422 (1997).

    Article  Google Scholar 

  81. Ledru, M. P., Mourguiart, P. & Riccomini, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 140–152 (2009).

    Article  Google Scholar 

  82. Pessenda, L. C. R. et al. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat. Res. 71, 437–452 (2009).

    Article  Google Scholar 

  83. Behling, H. & Negrelle, R. R. Tropical rain forest and climate dynamics of the Atlantic lowland, Southern Brazil, during the Late Quaternary. Quat. Res. 56, 383–389 (2001).

    Article  Google Scholar 

  84. Behling, H., Pillar, V. D., Orlóci, L. & Bauermann, S. G. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 277–297 (2004).

    Article  Google Scholar 

  85. Behling, H., Pillar, V. D. & Bauermann, S. G. Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev. Palaeobot. Palynol. 133, 235–248 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Bartlein for providing the LGM climate datasets. We thank L. G. Lohmann, J. L. Cracraft, J. M. Bates and H. Arakida for constructive discussions throughout the research process. This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and is a contribution of the Dimensions of Biodiversity US-Biota São Paulo programme through the Fundacão de Amparo á Pesquisa do Estado de São Paulo (FAPESP 2012/50260-6) and NSF and NASA (NSF DEB 1241056) (HS and SAC). I.C.P. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 787203 REALM) (ICP). The contribution by D.I.K. was supported by the UK Natural Environment Research Council through the UK Earth System Modelling Project (UKESM, grant no. NE/N017951/1).

Author information

Authors and Affiliations

Authors

Contributions

H.S. led the project and was responsible for project design, performing the experiment, analysis and writing. D.I.K. was responsible for project design, analysis, post-processing of data, figures and writing. S.J.M. was responsible for project design, analysis and writing. M.M.C. was responsible for development of the model and execution of the experiment. S.A.C. was responsible for project design, analysis and editing. I.C.P. was responsible for model development, analysis and writing.

Corresponding author

Correspondence to Hiromitsu Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Francis Mayle, Camila Ribas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flow chart of model workflow to describe relation between inputs, model, and outputs.

Flow of model protocol from spin-up to biome assignment for each factorial experiment run (LGM climate reconstruction + factorial experiment conditions.

Extended Data Fig. 2 Diagrammatic representation of how biomes are assigned in LPX according to vegetative characteristics.

Diagram representing the biome assignment scheme. a) Division of cold and warm-hot biomes according to GDD and general organization of biomes according by fpc and height. b) Classification into more specific biomes by presence and dominance of pfts. c) Further classification of forests into seasonal and evergreen categories based on pft proportions.

Extended Data Fig. 3 Canopy density of ensemble-driven vegetation reconstruction for LGM Neotropics.

Canopy density (leaf area index) distributions for the ensemble factorial experiment in dimensionless units (m2/m2).

Extended Data Fig. 4 Canopy height of ensemble-driven vegetation reconstruction for LGM Neotropics.

Canopy height (metres) distributions for the ensemble factorial experiment.

Extended Data Table 1 List of original palynological studies used in conjunction with meta-analyses by Marchant et al.49 and Mayle et al.48 for 18 000 ± 1000 14C yr BP.

Pertinent studies are in refs. 51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85. 1:tropical humid forest, 2:tropical dry forest, 3: warm temperate forest, 4: temperate evergreen forest, 5: temperate deciduous forest, 6: boreal evergreen forest, 7: boreal deciduous forest, 8: tropical savanna, 9: sclerophyll woodland, 10: temperate parkland, 11: boreal parkland, 12: dry grass/shrubland 13: hot desert, 14: shrub tundra, 15: tundra.

Extended Data Table 2 Affinity matrix for LPX biomes to compute ‘distance’ between biomes in trait space.

Thf = Tropical humid forest, Tdf = Tropical dry forest, wtf = warm temperate forest, tef = temperate evergreen forest, tdf = temperate deciduous forest, bef = boreal evergreen forest, bdf = boreal deciduous forest, Ts = Tropical savanna, sw = sclerophyll woodland, tp = temperate parkland, bp = boreal parkland, g = dry grass/shrubland, d = desert, st = shrub tundra, t = tundra.

Extended Data Table 3 Correspondence legend between pollen reconstructed and model assigned biomes.

Scheme to compare model and regionally specific pollen-derived biomes using the Discrete Manhattan metric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H., Kelley, D.I., Mayor, S.J. et al. Dry corridors opened by fire and low CO2 in Amazonian rainforest during the Last Glacial Maximum. Nat. Geosci. 14, 578–585 (2021). https://doi.org/10.1038/s41561-021-00777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00777-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing