Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells

Abstract

The interface of high-quality crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) is indispensable for achieving the ideal conversion efficiency of Si heterojunction solar cells. Therefore, it is extremely desirable to characterize and control the interface at the atomic scale. Here, we employ spherical aberration-corrected transmission electron microscopy to investigate the atomic structure of the c-Si/a-Si:H interface in high-efficiency Si heterojunction solar cells. Their structural evolution during in situ annealing is visualized at the atomic scale. High-density embedded nanotwins, detrimental to the device performance, are identified in the thin epitaxial layer between c-Si and a-Si:H. The nucleation and formation of these nanotwins are revealed via ex situ and in situ high-resolution transmission electron microscopy. Si heterojunction solar cells with low-density nanotwins are fabricated by introducing an ultra-thin intrinsic a-Si:H buffer layer and show better performance, indicating that the strategy to restrain embedded nanotwins can further enhance the conversion efficiency of Si heterojunction solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: c-Si/a-Si:H interface structure characteristics of SHJ solar cell.
Fig. 2: Electronic structure characteristics of nanotwin configurations.
Fig. 3: c-Si/a-Si:H interface structures at different stages during cell preparation.
Fig. 4: HRTEM images showing structural evolution of c-Si/a-Si:H interface under heating.
Fig. 5: The characteristics of two groups of SHJ solar cells with and without the i* layer.
Fig. 6: The effect of surface configuration of Si wafer on formation of nanotwin.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Battaglia, C., Cuevas, A. & de Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Enviro. Sci. 9, 1552–1576 (2016).

    Article  Google Scholar 

  2. Haschke, J., Dupré, O., Boccard, M. & Ballif, C. Silicon heterojunction solar cells: recent technological development and practical aspects – from lab to industry. Sol. Energy Mater. Sol. Cells 187, 140–153 (2018).

    Article  Google Scholar 

  3. Trube, J. International Technology Roadmap for Photovoltaic (ITRPV): Eleventh Edition Online (2020); https://itrpv.vdma.org/viewer/-/v2article/render/48393879

  4. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  5. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  6. Fuhs, W., Niemann, K. & Stuke, J. Heterojunctions of amorphous silicon and silicon single crystals. AIP Conf. Proc. 20, 345–350 (1974).

    Google Scholar 

  7. De Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

    Article  Google Scholar 

  8. Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  Google Scholar 

  9. Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovoltaics Res. Appl. 26, 3–12 (2018).

    Article  Google Scholar 

  10. Yamamoto, K., Yoshikawa, K., Uzu, H. & Adachi, D. High-efficiency heterojunction crystalline Si solar cells. Jpn J. Appl. Phys. 57, 08RB20 (2018).

    Article  Google Scholar 

  11. Essig, S. et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    Article  Google Scholar 

  12. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  13. Hekmatshoar, B., Shahrjerdi, D., Hopstaken, M., Ott, J. A. & Sadana, D. K. Characterization of thin epitaxial emitters for high-efficiency silicon heterojunction solar cells. Appl. Phys. Lett. 101, 103906 (2012).

    Article  Google Scholar 

  14. de Wolf, S., Ballif, C. & Kondo, M. Kinetics of a-Si:H bulk defect and a-Si:H/c-Si interface-state reduction. Phys. Rev. B 85, 113302–113306 (2012).

    Article  Google Scholar 

  15. Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).

    Article  Google Scholar 

  16. Li, H. et al. The amorphous/crystalline silicon interface research of HIT solar cells by simulation. Adv. Mater. Res. 773, 124–131 (2013).

    Article  Google Scholar 

  17. Pankove, J. I. & Tarng, M. L. Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 156 (1979).

    Article  Google Scholar 

  18. Fujiwara, H. & Kondo, M. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells. Appl. Phys. Lett. 90, 013503 (2007).

    Article  Google Scholar 

  19. Descoeudres, A. et al. Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment. Appl. Phys. Lett. 99, 123506 (2011).

    Article  Google Scholar 

  20. Yan, Y. et al. Atomic structure and electronic properties of c-Si/a-Si:H heterointerfaces. Appl. Phys. Lett. 88, 121925 (2006).

    Article  Google Scholar 

  21. Geissbühler, J. et al. Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments. Appl. Phys. Lett. 102, 231604 (2013).

    Article  Google Scholar 

  22. Ali, H. et al. Thermal stability of hole-selective tungsten oxide: in situ transmission electron microscopy study. Sci. Rep. 8, 12651 (2018).

    Article  Google Scholar 

  23. Ali, H. et al. In situ transmission electron microscopy study of molybdenum oxide contacts for silicon solar cells. Phys. Stat. Sol. A 216, 1800998 (2019).

    Google Scholar 

  24. Fan, Z. et al. In situ transmission electron microscopy for energy materials and devices. Adv. Mater. 31, 1900608 (2019).

    Article  Google Scholar 

  25. Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

    Article  Google Scholar 

  26. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    Article  Google Scholar 

  27. Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016).

    Article  Google Scholar 

  28. Zou, L., Li, J., Zakharov, D., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    Article  Google Scholar 

  29. Gong, Y. et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nat. Commun. 9, 3341 (2018).

    Article  Google Scholar 

  30. Zhao, H. et al. Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf. Acta Mater. 131, 271–279 (2017).

    Article  Google Scholar 

  31. Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article  Google Scholar 

  32. Wang, T. H. et al. Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells. Thin Solid Films 501, 284–287 (2006).

    Article  Google Scholar 

  33. Zhu, Y. et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    Article  Google Scholar 

  34. Sakaguchi, N., Ichinose, H. & Watanabe, S. Atomic structure of faceted Σ3 CSL grain boundary in silicon HRTEM and ab-initio calculation. Mater. Trans. 48, 2585–2589 (2007).

    Article  Google Scholar 

  35. Neaton, J. B., Muller, D. A. & Ashcroft, N. W. Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85, 1298–1301 (2000).

    Article  Google Scholar 

  36. Ramos, L. E. et al. Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds. Phys. Rev. B 63, 165210 (2001).

    Article  Google Scholar 

  37. Deák, P., Aradi, B., Frauenheim, T., Janzén, E. & Gali, A. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81, 153203 (2010).

    Article  Google Scholar 

  38. Huebl, H. et al. Phosphorus donors in highly strained silicon. Phys. Rev. Lett. 97, 166402 (2006).

    Article  Google Scholar 

  39. Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  Google Scholar 

  40. Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  Google Scholar 

  41. Zhang, L. et al. Effect of copassivation of Cl and Cu on CdTe grain boundaries. Phys. Rev. Lett. 101, 155501 (2008).

    Article  Google Scholar 

  42. Abou-Ras, D. et al. Confined and chemically flexible grain boundaries in polycrystalline compound semiconductors. Adv. Energy Mater. 2, 992–998 (2012).

    Article  Google Scholar 

  43. Meinel, K., Klaua, M. & Bethge, H. On twin and stacking fault formation during the epitaxial film growth of F.C.C. materials on (111) substrates. Phys. Stat. Sol. 110, 189–196 (1988).

    Article  Google Scholar 

  44. Zhai, S. et al. The twin formations on different growth planes of silicon crystal growth from melt by a molecular dynamics study. Phys. B 572, 184–189 (2019).

    Article  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  47. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  Google Scholar 

  48. Kimmerle, A., Rothhardt, P., Wolf, A. & Sinton, R. A. Increased reliability for J0-analysis by QSSPC. Energy Procedia 55, 101–106 (2014).

    Article  Google Scholar 

  49. Mäckel, H. & Varner, K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Prog. Photovoltaics Res. Appl. 21, 850–866 (2012).

    Google Scholar 

  50. Janssen, G. J. M., Wu, Y., Tool, K. C. J. J., Romijn, I. G. & Fell, A. Extraction of recombination properties from lifetime data. Energy Procedia 92, 88–95 (2016).

    Article  Google Scholar 

  51. Augusto, A., Herasimenka, S. Y., King, R. R., Bowden, S. G. & Honsberg, C. Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset. J. Appl. Phys. 121, 205704 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 11774016, 61922005, 11874314 and 62034001), Beijing Great Wall Scholars Program, Beijing Academic Outstanding Young Scientists Projects (BJJWZYJH01201910005018) and Australian Research Council. We thank Y. Zhang, M. Yang and C. Yu for device fabrication and SHJ cell process development, X. Chen for theoretical calculations and Y. Qin for SEM characterization from Carl Zeiss.

Author information

Authors and Affiliations

Authors

Contributions

X.Q. prepared the TEM sample and executed aberration-corrected HRTEM and HAADF-STEM. Y.H., M.Q. and T.R. fabricated the devices and carried out photovoltaic characterization. F.C. and Z.Z. carried out theoretical calculations. Y.M and Y.C. assisted with the theoretical calculations. X.R. assisted in the fabrication of devices. X.Q., Y.Z. and K.Z. analysed the experimental results and wrote the manuscript. X.X., H.Y. and Lihua Wang made helpful comments on the manuscript. X.H., Z.H., Z.-G.C. and Lianzhou Wang guided the PCE loss analysis and provided constructive suggestions. K.Z. and Y.Z. led the entire project. All authors read the manuscript and contributed to the discussion of the results.

Corresponding authors

Correspondence to Yongzhe Zhang or Kun Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Urs Aeberhard, Kristopher Davis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1 and references.

Source data

Source Data Fig. 1

An efficiency of 24.85% is certified by the Institute for Solar Energy Research in Hamelin with a total area of 244.5 cm2 measured under standard test conditions.

Source Data Fig. 5

Source data of Fig. 5d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., He, Y., Qu, M. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat Energy 6, 194–202 (2021). https://doi.org/10.1038/s41560-020-00768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-020-00768-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing