Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data

Abstract

The origin and evolution of cell types has emerged as a key topic in evolutionary biology. Driven by rapidly accumulating single-cell datasets, recent attempts to infer cell type evolution have largely been limited to pairwise comparisons because we lack approaches to build cell phylogenies using model-based approaches. Here we approach the challenges of applying explicit phylogenetic methods to single-cell data by using principal components as phylogenetic characters. We infer a cell phylogeny from a large, comparative single-cell dataset of eye cells from five distantly related mammals. Robust cell type clades enable us to provide a phylogenetic, rather than phenetic, definition of cell type, allowing us to forgo marker genes and phylogenetically classify cells by topology. We further observe evolutionary relationships between diverse vessel endothelia and identify the myelinating and non-myelinating Schwann cells as sister cell types. Finally, we examine principal component loadings and describe the gene expression dynamics underlying the function and identity of cell type clades that have been conserved across the five species. A cell phylogeny provides a rigorous framework towards investigating the evolutionary history of cells and will be critical to interpret comparative single-cell datasets that aim to ask fundamental evolutionary questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Percentage of variance described per PC.
Fig. 2: The inclusion of more PCs in the character matrix leads to a prevalence of noise, obscuring the phylogenetic signal.
Fig. 3: The formation of cell type clades improves when the number of PCs is reduced.
Fig. 4: A cell phylogeny of aqueous humour cells.
Fig. 5: Averaging replicate cells stabilizes relationships between and within cell type clades.

Similar content being viewed by others

Data availability

A GitHub repository (https://github.com/dunnlab/cellphylo) is provided containing select input, intermediate and output files (‘cellphylo/analysis/’) sufficient to reproduce the analyses.

Code availability

All custom code is available in our GitHub repository: https://github.com/dunnlab/cellphylo.

References

  1. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Martindale, M. Q. & Henry, J. Q. Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev. Biol. 214, 243–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tanay, A. & Sebé-Pedrós, A. Evolutionary cell type mapping with single-cell genomics. Trends Genet. 37, 919–932 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

  6. Gilbert, E. et al. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 149, dev200833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kin, K., Nnamani, M. C., Lynch, V. J., Michaelides, E. & Wagner, G. P. Cell-type phylogenetics and the origin of endometrial stromal cells. Cell Rep. 10, 1398–1409 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, C., Forrest, A. R. R. & Wagner, G. P. The statistical geometry of transcriptome divergence in cell-type evolution and cancer. Nat. Commun. 6, 6066 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Musser, J. M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374, 717–723 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes, A. L. & Friedman, R. A phylogenetic approach to gene expression data: evidence for the evolutionary origin of mammalian leukocyte phenotypes. Evol. Dev. 11, 382–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner, G. P. Homology, Genes, and Evolutionary Innovation (Princeton Univ. Press, 2014).

  12. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Arendt, D. Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47, 563–571 (2003).

    PubMed  Google Scholar 

  15. Arendt, D., Bertucci, P. Y., Achim, K. & Musser, J. M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 56, 144–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serb, J. M. & Oakley, T. H. Hierarchical phylogenetics as a quantitative analytical framework for evolutionary developmental biology. Bioessays 27, 1158–1166 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Packer, J. S. et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365, eaax1971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitman, C. O. The embryology of Clepsine. J. Cell Sci. s2-18, 215–315 (1878).

    Article  Google Scholar 

  20. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).

  24. Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987 (2021).

  25. Seidel, S. & Stadler, T. TiDeTree: a Bayesian phylogenetic framework to estimate single-cell trees and population dynamic parameters from genetic lineage tracing data. Proc. R. Soc. B 289, 20221844 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao, Z.-M. et al. Early and multiple origins of metastatic lineages within primary tumors. Proc. Natl Acad. Sci. USA 113, 2140–2145 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moravec, J. C., Lanfear, R., Spector, D. L., Diermeier, S. D. & Gavryushkin, A. Testing for phylogenetic signal in single-cell RNA-seq data. J. Comput. Biol. 30, 518–537 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  29. Paganos, P., Voronov, D., Musser, J. M., Arendt, D. & Arnone, M. I. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. Elife 10, e70416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U. & Shapiro, E. Genomic variability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1, e50 (2005).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. Elife 10, e66747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Zyl, T. et al. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc. Natl Acad. Sci. USA 117, 10339–10349 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, R. et al. Construction of a cross-species cell landscape at single-cell level. Nucleic Acids Res. 51, 501–516 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Chen, D. et al. Single cell atlas for 11 non-model mammals, reptiles and birds. Nat. Commun. 12, 7083 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunn, C. W., Zapata, F., Munro, C., Siebert, S. & Hejnol, A. Pairwise comparisons across species are problematic when analyzing functional genomic data. Proc. Natl Acad. Sci. USA 115, E409–E417 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  39. Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1997).

    ADS  Google Scholar 

  40. Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

    Article  PubMed  Google Scholar 

  41. Mah, J. L., Christensen-Dalsgaard, K. K. & Leys, S. P. Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol. Dev. 16, 25–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Laundon, D., Larson, B. T., McDonald, K., King, N. & Burkhardt, P. The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biol. 17, e3000226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

  45. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

  46. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at http://arxiv.org/abs/1802.03426 (2020).

  47. Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471–492 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  49. Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thorley, J. L. & Wilkinson, M. Testing the phylogenetic stability of early tetrapods. J. Theor. Biol. 200, 343–344 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Levy, C., Khaled, M. & Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. van Zyl, T. et al. Cell atlas of the human ocular anterior segment: tissue-specific and shared cell types. Proc. Natl Acad. Sci. USA 119, e2200914119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sokal, R. R. et al. Principles of Numerical Taxonomy (WH Freeman & Co, 1963).

  54. Sokal, R. R. & Michener, C. D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38, 1409–1438 (1958).

    Google Scholar 

  55. Iwasa, M. A. & Suzuki, H. Evolutionary significance of chromosome changes in northeastern Asiatic red-backed voles inferred with the aid of intron 1 sequences of the G6pd gene. Chromosome Res. 10, 419–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Leclaire, S., Menard, S. & Berry, A. Molecular characterization of Babesia and Cytauxzoon species in wild South-African meerkats. Parasitology 142, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Dimayacyac, J. R., Wu, S. & Pennell, M. Evaluating the performance of widely used phylogenetic models for gene expression evolution. Prepint at bioRxiv https://doi.org/10.1101/2023.02.09.527893 (2023).

  58. Rohlfs, R. V., Harrigan, P. & Nielsen, R. Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for within-species variation. Mol. Biol. Evol. 31, 201–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Bertram, J. et al. CAGEE: computational analysis of gene expression evolution. Mol. Biol. Evol. 40, msad106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    PubMed  Google Scholar 

  61. Wagner, G. P. Homologues, natural kinds and the evolution of modularity. Integr. Comp. Biol. 36, 36–43 (1996).

    Google Scholar 

  62. Liang, C., Musser, J. M., Cloutier, A., Prum, R. O. & Wagner, G. P. Pervasive correlated evolution in gene expression shapes cell and tissue type transcriptomes. Genome Biol. Evol. 10, 538–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Hobert, O. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc. Natl Acad. Sci. USA 105, 20067–20071 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yin, W., Mendoza, L., Monzon-Sandoval, J., Urrutia, A. O. & Gutierrez, H. Emergence of co-expression in gene regulatory networks. PLoS ONE 16, e0247671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, J. et al. Single-cell co-expression analysis reveals distinct functional modules, co-regulation mechanisms and clinical outcomes. PLoS Comput. Biol. 12, e1004892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hall, B. K. Germ layers, the neural crest and emergent organization in development and evolution. Genesis 56, e23103 (2018).

    Article  PubMed  Google Scholar 

  69. Hashimshony, T., Feder, M., Levin, M., Hall, B. K. & Yanai, I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature 519, 219–222 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Steinmetz, P. R. H., Aman, A., Kraus, J. E. M. & Technau, U. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat. Ecol. Evol. 1, 1535–1542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gage, P. J., Rhoades, W., Prucka, S. K. & Hjalt, T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest. Ophthalmol. Vis. Sci. 46, 4200–4208 (2005).

    Article  PubMed  Google Scholar 

  72. Williams, A. L. & Bohnsack, B. L. Neural crest derivatives in ocular development: discerning the eye of the storm. Birth Defects Res. C Embryo Today 105, 87–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodrigues, M. M., Katz, S. I., Foidart, J. M. & Spaeth, G. L. Collagen, factor VIII antigen, and immunoglobulins in the human aqueous drainage channels. Ophthalmology 87, 337–345 (1980).

    Article  CAS  PubMed  Google Scholar 

  74. Pandolfi, M. Coagulation factor VIII: localization in the aqueous outflow pathways. Arch. Ophthalmol. 94, 656–658 (1976).

    Article  CAS  PubMed  Google Scholar 

  75. Kizhatil, K., Ryan, M., Marchant, J. K., Henrich, S. & John, S. W. M. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 12, e1001912 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ramírez, J. M. et al. Schlemm’s canal and the collector channels at different developmental stages in the human eye. Cells Tissues Organs 178, 180–185 (2004).

    Article  PubMed  Google Scholar 

  77. Ashton, N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins. Br. J. Ophthalmol. 35, 291–303 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smelser, G. K. & Ozanics, V. The development of the trabecular meshwork in primate eyes. Am. J. Ophthalmol. 71, 366–385 (1971).

    Article  CAS  PubMed  Google Scholar 

  79. Krohn, J. Expression of factor VIII-related antigen in human aqueous drainage channels. Acta Ophthalmol. Scand. 77, 9–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Francois, M., Harvey, N. L. & Hogan, B. M. The transcriptional control of lymphatic vascular development. Physiology 26, 146–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Aspelund, A. et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Trost, A. et al. Brain and retinal pericytes: origin, function and role. Front. Cell. Neurosci. 10, 20 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alarcon-Martinez, L. et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife 7, e34861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Etchevers, H. C., Vincent, C., Le Douarin, N. M. & Couly, G. F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128, 1059–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Ignarro, L. J. et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 218, 739–749 (1981).

    CAS  PubMed  Google Scholar 

  86. Bouallegue, A., Daou, G. B. & Srivastava, A. K. Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr. Vasc. Pharmacol. 5, 45–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Kamikawatoko, S. et al. Nitric oxide relaxes bovine ciliary muscle contracted by carbachol through elevation of cyclic GMP. Exp. Eye Res. 66, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Lepple-Wienhues, A., Stahl, F., Willner, U., Schäfer, R. & Wiederholt, M. Endothelin-evoked contractions in bovine ciliary muscle and trabecular meshwork: interaction with calcium, nifedipine and nickel. Curr. Eye Res. 10, 983–989 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Rucker, H. K., Wynder, H. J. & Thomas, W. E. Cellular mechanisms of CNS pericytes. Brain Res. Bull. 51, 363–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35, 1229–1242 (1981).

    Article  PubMed  Google Scholar 

  93. Parins-Fukuchi, T. Use of continuous traits can improve morphological phylogenetics. Syst. Biol. 67, 328–339 (2018).

    Article  PubMed  Google Scholar 

  94. Parins‐Fukuchi, T. Bayesian placement of fossils on phylogenies using quantitative morphometric data. Evolution 72, 1801–1814 (2018).

    Article  PubMed  Google Scholar 

  95. Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59, 2460–2472 (2005).

    PubMed  Google Scholar 

  96. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).

    Article  MathSciNet  Google Scholar 

  98. Kuhner, M. K. & Felsenstein, J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11, 459–468 (1994).

    CAS  PubMed  Google Scholar 

  99. Smith, S. A. & Dunn, C. W. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    MathSciNet  Google Scholar 

  102. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to members of the Dunn lab, including S. Church, for their invaluable feedback throughout this project. We would also like to thank J. Musser, G. Wagner, D. Stadtmauer, A. Chavan, D. Adams and L. Revell for insightful comments that greatly improved our manuscript and analyses. We thank the Yale Center for Research Computing for guidance and the cloud resources provided as a part of the AWS Cloud Credit for Research Program at Yale. J.L.M. acknowledges funding from the Gruber Foundation (Gruber Science Fellowship) and the Natural Sciences and Engineering Research Council of Canada (NSERC PGS-D).

Author information

Authors and Affiliations

Authors

Contributions

J.L.M. and C.W.D. conceptualized this study and developed its methodology. J.L.M. designed and conducted the formal analyses, investigation and visualization, wrote the manuscript and performed revisions. C.W.D. additionally supervised the project and contributed text, feedback and edits.

Corresponding author

Correspondence to Jasmine L. Mah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Xavier Grau-Bové and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Matrices created at each step of the workflow.

Each grey box represents a matrix, with the number of cells indicated. Matrices were processed separately for each species (‘Within-Species Analysis’ - steps 1-4), then combined into a single multi-species matrix (‘Cross-Species Analysis’ - steps 5-6) and rotated (step 7) to produce a 919 cell 919 principal component matrix. The matrices used for Figures 25 were subsequently built by subsetting from a 919 cell 919 PC matrix. Note that the step 7 matrix is re-calculated for each figure. The PCA (via the R function ‘prcomp’) is reproducible, but small differences are possible due to machine rounding error. Because of this, all input files for each figure are provided in the git repo (https://github.com/dunnlab/cellphylo) to ensure reproducibility. A step-by-step walk through to produce the results described by Figures 2, 4 and 5 are provided in the repo. The animal silhouettes were from PhyloPic (https://www.phylopic.org).

Extended Data Fig. 2 Cells cluster into multi-species cell type clusters after cross-species integration.

A UMAP plot of cells, colored by A. species identity and B. cell type identity. macF, Macaca fascicularis, macM, Macaca mulatta, CollectorChn, collector channel cell, CollectorChnAqVein, collector channel aqueous vein cell, Endo, endothelium, Endo-Corneal, corneal endothelium, Endo-Schlemms, Schlemm’s canal endothelium, Endo-Vasc, vascular endothelium, Epi-CiliaryNonPigment, non-pigmented ciliary epithelium, Epi-CiliaryPigment, pigmented ciliary epithelium, Epi-Corneal, corneal epithelium, Epi-Pigment, pigmented epithelium, JCT, juxtacanalicular tissue, NKT, natural killer T cell, my, myelinating, nmy, non-myelinating.

Extended Data Fig. 3 A cell phylogeny of 92 aqueous humor cells.

This phylogeny was created using the same methods as the 54 cell phylogeny of Figure 4, but was inferred from the 92 cell 20 PC matrix (Extended Data Fig. 1, step C1.1) that included one cell per cell type group per species for all 92 cell type groups. This matrix is more encompassing than the 54 cell 20 PC matrix (Extended Data Fig. 1, step C1.2), as it includes the unstable cell type groups that were excluded from the final analysis (Methods). Jumble scores are plotted at the nodes. The scale bar indicates units of expected evolutionary change. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, NKT, natural killer T cell.

Extended Data Fig. 4 Felsenstein’s bootstrap is not a suitable measure of biological repeatability for a cell phylogeny.

The 54 cell phylogeny (Fig. 4) is annotated with Felsenstein’s bootstrap scores calculated from scjackknife trees. While scjackknife trees still produced cell type clades, cell clades among scjackknife trees frequently varied by a few cells. This subtle variability is not well captured by traditional bootstrap scores, which mark clades as present/absent based on the presence of all tips, without acknowledging the degree of similarity. Species and cell type groups are labeled at the tips; numbers refer to the cluster number of the cell type group. Cell type clades are indicated by vertical bars. The scale bar indicates units of expected evolutionary change. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, JCT, juxtacanalicular tissue, my, myelinating, nmy, non-myelinating, NKT, natural killer T cell.

Extended Data Fig. 5 Leaf stability index by cell type.

Leaf stability indices (LSI) calculated from the Fig. 4 phylogeny are highly concordant with negligible spread within each cell type clade, with the exception of immune cells (NKT and macrophages). Mean LSI for each cell type is plotted and vertical lines indicate standard deviation. The number of tips per cell type label is indicated along the bottom as ‘n tips’. The standard deviation for n tips < 3 is not shown. Cell type labels are labeled along the x-axis. Superclades are indicated with horizontal lines. Endo-Vasc, vascular endothelium, CollectorChn, collector channel cell, NKT, natural killer T cell, JCT, juxtacanalicular tissue, Endo-Corneal, corneal endothelium, my, myelinating, nmy, non-myelinating.

Extended Data Fig. 6 The averaged tree exhibits high tip stability.

The leaf stability index (LSI) is plotted as tip color onto the Fig. 5 tree. Most tips exhibit an LSI close to 1, the maximum score. Species and cell type groups are labeled at the tips, with numbers referring to the cluster number of the cell type group. Cell type clades are indicated by vertical bars. The scale bar indicates units of expected evolutionary change. Inset: Mean LSI for each cell type is plotted and vertical lines indicate standard deviation. The number of tips per cell type label is indicated along the bottom as ‘n tips’. The standard deviation for n tips < 3 is not shown. Cell type labels are labeled along the x-axis. Superclades are indicated with horizontal lines. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, CC, collector channel, NKT, natural killer T cell, Endo-Vasc, vascular endothelium, CollectorChn, collector channel cell, Endo-Corneal, corneal endothelium.

Extended Data Fig. 7 Neighbour joining tree calculated from averaged expression levels.

The neighbour joining method was used to calculate a phenetic tree from the averaged matrix (Extended Data Fig. 1, step D1) used to infer the Fig. 5 cell phylogeny. Cell type clades are indicated with vertical bars. Species and cell type groups are labeled at the tips, with numbers indicating the cluster number of the cell type group. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, CC, collector channel, VE, vascular endothelium, NKT, natural killer T cell.

Extended Data Fig. 8 UPGMA tree calculated from averaged expression levels.

UPGMA was used to calculate a phenetic tree from the averaged matrix (Extended Data Fig. 1, step D1) used to infer the Fig. 5 cell phylogeny. Species and cell type groups are labeled at the tips, with numbers indicating the cluster number of the cell type group. Cell type clades are indicated with vertical bars. Red dots highlight cells that failed to group with their corresponding cell type clade. The Schwann cells and immune cells superclades are paraphyletic, as indicated with dashed lines. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, CC, collector channel, VE, vascular endothelium, NKT, natural killer T cell.

Extended Data Fig. 9 WPGMA tree calculated from averaged expression levels.

WPGMA was used to calculate a phenetic tree from the averaged matrix (Extended Data Fig. 1, step D1) used to infer the Fig. 5 cell phylogeny. Species and cell type groups are labeled at the tips, with numbers indicating the cluster number of the cell type group. Cell type clades are indicated with vertical bars. Red dots highlight cells that failed to group with their corresponding cell type clade. The vessel endothelia superclade is polyphyletic, as indicated with dashed lines. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, CC, collector channel, VE, vascular endothelium, NKT, natural killer T cell.

Extended Data Fig. 10 The topologies of the cell phylogeny and neighbour joining tree are broadly similar.

Neighbour joining was used to create scjackknife trees. The resulting scjackknife scores were plotted onto the Fig. 5 cell phylogeny. There is broad agreement at nodes defining cell type clades and the relationships between them. H. sap., Homo sapiens, M. fas., Macaca fascicularis, M. mul., Macaca mulatta, M. mus., Mus musculus, Sus. scr., Sus scrofa, my, myelinating, nmy, non-myelinating, JCT, juxtacanalicular tissue, CC, collector channel, NKT, natural killer T cell.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mah, J.L., Dunn, C.W. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat Ecol Evol 8, 325–338 (2024). https://doi.org/10.1038/s41559-023-02281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02281-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing